
Dynamics Technology, Inc.

DTW-8944-91003

METRIWAVE FINAL REPORT
NAS7-1071

!'

By:

Wyman Williams

- -/c%-

, -j ,-

i

OCTOBER 1991

Dynamics Technology, Inc.
21311 Hawthorne Boulevard

Suite 300

Torrance, CA 90503
(310) 543-5433

5¢ .¢9u,9
i._i !. _'< '!

_/., ,

'::_ j. ", ,; Q J

_ DTW-8944-91003

TABLE OF CONTENTS

2.1

INTRODUCTION ..

SAMPLED-LINE MODULE DESIGN ...

Four-Port Network Analyzer Theory ..

2.1.1 Reflection Measurements with the Four-Port Network Analyzer .,
2.1.2 S-Parameter Measurements with the Four-Port Network

2.2

Analyzer ..

Six-Port Network Analyzer Theory ..

2.2.2 Dual Reflectometer Calibration - The TRL Scheme

2.2,3 S-Parameter Measurements with the Six-Port Network Analyzer

2.3 Sampled-Line Network Analyzer Theory ..

2.3.1 Placement of the Measurement Centers

2.3.2 Calibration and Measurement Options with the Sampled-Line
2.3.3 Comparison of the Sampled-Line and NBS Six-Ports

2.4 Construction of the Sampled-Line Module ..

2.5 Calibration and Measurement Tests with the

Sampled-Line Module ...

3.0 POST-DETECTION ELECTRONICS DESIGN AND CONSTRUCTION

4.0 SYNCHRONIZATION CIRCUITRY ..

5.0 SYSTEM SIGNAL GENERATOR ...

6.0 SYSTEM PHASE SHIFTER ..

7.0 CONCLUSION ..

REFERENCES ...

Page

1-1

2-1

2-1

2-2

2-8

2-16

2-29
2-37

2-41

2-43
2-52
2-52

2-55

2-62

3-1

4-1

5-1

6-1

7-1

R-1

-i-

M :DT R91B.AES/WP4

_ DTW-8944-91003

Figure 2.1

Figure 2.2

Figure 2.3

Figure 2.4

Figure 2.5

Figure2.6

Figure 2.7

Figure 2.8

Figure 2.9

Figure 2.10

Figure 2.11

Figure 2.12

Figure 2.13

Figure 2.14

LIST OF FIGURES

Page

The normalized scattering waves a and b are related to the forward-
going and reverse-going voltage waves V + and V" on the transmission

line by a = V+/,I 2Z 0 and b = V/,I 2Z 0 where Z 0 is the characteristic
impedance of the transmission line .. 2-1

The four-port network analyzer uses a vector voltmeter and a pair of
matched directional couplers to measure the reflection coefficient 2-3

This four-port network analyzer uses a vector voltmeter and an
arbitrary linear four-port network to measure the reflection coefficient.

If b3/b 4 exists, it is just a bilinear transform of F.................................... 2-4

Errors in the reflection measurement can be modeled by an error two-

port between the reflectometer and the device under test 2-6

Signal flow graph for errors in the reflection measurement 2-7

A reflection-transmission test set for full S-parameter measurements
using a four-port network analyzer .. 2-9

This flow graph shows the error model for the reflection-transmission
test set .. 2-13

A full S-parameter test set using the four-port network analyzer 2-15

The six-port network analyzer uses only power detectors to determine

the complex ratio a2/b 2 at its test port .. 2-16

Outputs of the six-port's power detectors give a family of circles that
can be solved for the complex ratio of the signals at two of the
detectors ... 2-19

The sliding short circuit, used in the first stage of the the six-port
calibration, traces out a circle in the complex w-plane 2-23

The six-port network analyzer as implemented at NBS 2-28

In the TRL. calibration procedure, the coefficients of the error boxes A
and B of two reflectometers are determined by making the three
measurements shown here .. 2-31

A full S-parameter measurement system using six-port network
analyzers .. 2-38

M :DTR91 B.AES_4

-ii -

DTW-8944-91003

Figure 2.15

Figure 2.16

Figure 2.17

Figure 2.18

Figure 2.19

Figure 2.20

Figure 2.21

Figure 2.22

Figure 2.23

Figure 2.24

Figure 2.25

Figure 2.26

Figure 3.1

Figure 3.2

Figure 5.1

Figure 5.2

Figure 5.3

Figure 5.4

Figure 6.1

Page

The sampled-line analyzer consists of a number of power detectors
distributed along a transmission line ... 2-42

Model of the ideal sampled-line at a single frequency 2-45

The sampled-line analyzer maps the ['-plane to the w-plane 2-48

Sensitivity of the calculated [' to noise in the power detectors over the
I [' 1_<I region with a 0.5 dB attenuator between the sampled-line and
the device under test ... 2-50

Sensitivity of the calculated [' to noise in the power detectors over the
I[' I<1 region with a 3 dB attenuator between the sampled-line and the

device under test ... 2-51

Comparison of the sampled-line network analyzer with an NBS-type
six-port network analyzer. Ideal models are used for couplers in NBS
circuit .. 2-53

Sampling circuit used in the sampled-line network analyzer 2-55

Measured responsivities for two sampler circuits 2-57

The microstrip attenuator integrated into the sampled-line module
exhibits attenuation flatness of *0.5 dB over the 1-8 GHz band 2-59

S-parameters of the sampled-line network analyzer module 2-60

Detector responsivities of the sampled-line module 2-61

Results of a typical room temperature test .. 2-63

Instrumentation electronics for the sampled-line network analyzer
consist of a multi-channel PC-based lock-in amplifier 3-3

Noise performance of a typical channel of the post-detection
electronics .. 3-4

Block diagram of the high-purity 2-8 GHz signal generator 5-2

The signal generator output at 1.5 GHz shows typical performance of
the hyperabrupt varactor-tuned oscillator .. 5-4

The signal generator output at 6 GHz shows typical performance of
the YIG- tuned oscillator .. 5-5

Power output of the signal generator was measured using an HP 432A

power meter with a HP 478A thermistor mount 5-6

A digital phase shifter ... 6-2

-iii -

M :DTR91B.AEShVP4

__ DTW-8944-91003

1.0 INTRODUCTION

The superconductor-insulator-superconductor (SIS) mixer is a device which is being used in

the construction of very sensitive receivers in the millimeter &nd submillimeter wavelength

regions. With its potential for conversion gain and quantum-limited performance, it is

becoming a device of prime importance in radio astronomy as well as earth and planetary

atmospheric research.

Many of the parameters of the SIS mixer cannot be readily measured in the laboratory,

however, since most commercially available test instruments use test signal powers large

enough to saturate or destroy SIS junctions. This report details the construction of a

microwave network analyzer with extremely low test signal powers. It documents the results

of a development performed by Dynamics Technology, Inc., under a Phase II SBIR contract

from NASA (NAS7-1025).

The work resulted in a network analyzer to be delivered to workers at the Jet Propulsion

Laboratory, which should be capable of SIS mixer characterization in support of their

ongoing work in this area.

This report is organized in sections which correspond to the technical objectives identified in

the Phase II proposal. Appendices provide detailed schematics and parts lists of all circuitry

designed in this work. Circuit descriptions in the main text of the report support the

schematics. In addition, another appendix contains an operator's manual for the delivered

network analyzer. These Phase II technical objectives were:

, Develop parametric variations of the existing design of the sampled-line
reflectometer modules. Evaluate the performance of the variations. Build and
test modules with desirable performance parameters.

2. Design instrumentation preamplifiers and A/D converters for use with the network
analyzer. Build and test the preamplifiers.

3. Design and build synchronization circuitry for use with the network analyzer.

4. Refine the existing phase shifter design.

5. Design and build a microwave signal generator for use with the network analyzer.

6. Deliver a working prototype network analyzer to NASA.

The sections following this introduction present theoretical and experimental results from

work on each of the above objectives.

1-1
DTR91B.AE5/WP4

-- DTW-8944-91003

2.0 SAMPLED-LINE MODULE DESIGN

For the sake of completeness, the theoretical background for the sampled-line network

c.nalyzer is presented here. Some new theoretical results derived as part of the Phase ii

effort are presented. This is followed by a description of the design and testing of the new

sampled-line modules.

2.1 Four-Port Network Analyzer Theory

The job a network analyzer must perform can be stated quite simply. The parameters are

shown in Figure 2.1. Two travelling voltage waves, a and b, propagate in opposite directions

on a transmission line. At a particular point on the line, known as the reference plane, the

network analyzer measures the amplitude ratio and phase difference between these two

(sinusoidal) waves.

The ability to measure this complex ratio, for a set of transmission lines connected to the

ports of an unknown microwave network, allows the network analyzer to determine the

complete S-parameters of that network. The machinations required to derive all the

S-parameters from a given set of measurements, however, become more elaborate as the

number of ports on the unknown network increases.

Machines that measure the complex ratio of travelling waves fall into two categories. The

first type is built by combining a linear four-port network with a vector voltmeter, and the

second uses a six-port network and several power detectors.

Reference

plane

F=¢_o

_n
terminotion

Figure 2.1

DTR91B.AES/WP 1

The normalized scattering waves a and b are related to the forward-going and
reverse-going voltage waves V + and V- on the transmission line by
a = V+/2_ 0 and b = V'/2J'_O where Z 0 is the characteristic impedance of the
transmission line. Thus, r is the voltage reflection coefficient, r = V+/V -.

2-1

DTW-8944-91003

The four-port network analyzer was the first developed, and forms the basis of most of the

currently available commercial network analyzers. In this chapter, the theory of operation of

the four-port network analyzer will be presented. The theories of operation of the six-port

and sampled-line networl,. 3nalyzers build upon this theory, and assumptions made in

developing the four-port theory are germane to comparisons of performance of the various

network analyzer approaches.

2.1.1 Reflection Measurements with the Four-Port Network Analyzer

The reflection measurement is the simplest network analyzer measurement. As shown in

Figure 2.1, only an unknown impedance and two travelling wave quantities are involved.

The unknown impedance is connected to the end of a transmission line. The voltage wave

a, travelling on the line impinges on the unknown device. The travelling wave b, resulting

from the impedance mismatch between the unknown device and the transmission line, is

reflected back along the line. By measuring the amplitude ratio and phase difference

between the incident and reflected waves at a fixed reference plane, the complex reflection

coefficient, F of the unknown device is determined. This, along with knowledge of the

characteristic impedance of the transmission line, is sufficient to determine the unknown

impedance.

Figure 2.2 shows schematically how a vector voltmeter and a pair of matched directional

couplers can be combined to yield a four-port reflectometer (the box containing the two

couplers forms the "four-port" for which the analyzer is named). The vector voltmeter is a

frequency-tracking heterodyne receiver that indicates the complex ratio of the two microwave

signals presented at its inputs.

One directional coupler samples the forward-going wave, and the other the reflected wave.

If the directional couplers are matched and have perfect directivity, and if port 2 presents a

source impedance of exactly Z 0 to the device under test, then b3/b 4 = a2/b 2 = [" and the

value indicated by the vector voltmeter will be the true reflection coefficient.

These conditions are stringent, however, and even with the best designs imperfections in the

components give rise to large errors. With the Hewlett-Packard 8743B reflection-

transmission test unit, for example, in the 2-8 GHz frequency range, magnitude errors of

0.15 are possible when measuring reflection coefficients of unity magnitude.

2-2

DTR91B.AES/WP4

DTW-8944-91003

Signal
generator

a, _--tI:)4a3_,-"_b3

aI a2

"-" P, tt q
I 11 1 .--.

b1 Matched couplers b2

Device
under
test

Figure 2.2 The four-port network analyzer uses a vector voltmeter and a pair of matched
directional couplers to measure the reflection coefficient.

These large errors, however, are systematic and can be calibrated out by measuring known

calibration standards. The calibration procedure and the number of standards required are

determined by the relationship between the true and indicated values of F. This relationship

can be found in a straightforward way by adapting Middlebrook's extra element theorem [1] to

travelling wave network parameters.

Consider the four-port network analyzer of Figure 2.3. Here the dual directional couplers of

Figure 2.2 have been replaced by an arbitrary linear four-port. Also, offset and gain terms

have been added to the response of the vector voltmeter.

By superposition,

b4 = Kla I + K2a 2

b3 = Lla I + L2a 2

b2 = Mla I + M2a 2

(2.1)

(2.2)

(2.3)

2-3

DTRg1B.AES_NP1

DTW-8944-91003

I Vectorvoltmeter J

"- Device
Signal -'-" I ' E1 undergenerator (_) I i

- J-.bt bz test

Figure 2.3 This four-port network analyzer uses a vector voltmeter and an arbitrary linear

four-port network to measure the reflection coefficient. If b3/b 4 exists, it is just
a bilinear transform of ['.

By definition, a2 = r b2.

b 4

b 3

Inserting this in (2.1 - 2.3) and solving (2.3) for b2 gives

= Kla I + K2F b2 (2.4)

= Lla I + L2F b2 (2.5)

M 1

b2 1 - M2F al (2.6)

Substituting (2.6) into (2.4) and (2.5) gives

K 1 + [MIK 2 - M2K 1IF

b4 = 1 - M2F al (2.7)

L1 + [MIL 2 - M2L 1IF

b3 = 1 - M2F al (2.8)

2-4

DTR91B.AE5,%'VP I

DTW-8944-91003

Dividing (2.8) by (2.7) gives

b 3

b 4

L I + [MIL 2 - M2LI]F

K 1 + (MIK 2 - M2KI]F

(2.9)

Finally, including the response of the vector voltmeter, F' = C 0 + C 1 b3/b 4 and dividing the

numerator and denominator through by the coefficient of F in the numerator gives

F' - F + A (2.10)
B[_ + C

So the final result is that the value F' indicated on the vector voltmeter is a bilinear transform

of the actual value of F. The bilinear transform has three complex constants, so three known

standards must be measured in order to determine the calibration coefficients, and thereafter

correct the measured data.

The calibration procedure is straightforward. Multiplying (2.10) through by the denominator

of the right side gives

-A + FF' B + F'C = F (2.11)

which is a linear equation in A, B, and C. By observing F' for three different known values

of [', the coefficients of three such equations are determined, and the values of A, B, and C

can be determined. The true value of F is then found by inverting the transform:

F - CF' - A (2.12)
i - BF'

The above result is interesting in several respects. The first is its generality. Any four-port

network that is linear, and for which the ratio of (2.10) exists, can be used as a network

analyzer and calibrated by measuring three known standards. Also, the fact that F' is a

ratio measurement makes the result independent of the level of the test signal injected at

port 1 and thus the source impedance of the generator.

The fact that F' is a bilinear transform of F allows the systematic errors of the system to be

modeled in a simple way. Figure 2.4 shows the error model. It consists of an ideal network

analyzer with an "error two-port" between the ideal analyzer's reference plane and the

device under test. The fact that this gives rise to the same relationship between observed

and actual values as that derived above can be seen by considering the T-parameters of the

error two-port.

2-5

DTR91B.AES_/P4

D'rw-8944-91003

Device
Under
Test

Figure 2.4 Errors in the reflection measurement can be modeled by an error 2-port
between the reflectometer and the device under test.

b 1 --

a 1 --

r' =

Tlla 2 + Tl2b 2

T21a 2 + T22b 2

b I Tlla 2 + Tl2b 2

a I T21a 2 + T22b 2

TIIF + TI2

T21F + T22

(2.13)

(2.14)

(2.15)

(2.16)

For a practical system T 11 '_ 0 and dividing the numerator and denominator of (2.16) through

by T 11 gives (2.10).

This error model can be represented by the signal flow graph of Figure 2.5. The graph is

labeled with three error terms that are often quoted for reflectometers. They are related to

the physical sources of error in the dual-coupler type reflection test set. ED is the directivity

error, related to the imperfect directivity of the couplers in the test set. Es is the source

match error, related to the impedance mismatch at the measurement port of the test set.

Lastly, ER is the frequency response error, related to differences in the frequency responses

of the two directional couplers.

2-6

DTR91B,AE&tWP1

DTW-8944-91003

1

E S

i

b 1 _,

rF

Figure 2.5 Signal flow graph for errors in the reflection measurement.

In terms of these quantities, the relation between F and F' can be found through Mason's

gain rule as

ERF
F _ = E +

D 1 - EsF

E D + [E R - E S ED}F

I - EsF

(2.17)

(2.18)

In practical systems, the greatest errors typically arise from the source mismatch error, when

F is near unity in magnitude.

In modern network analyzers, built-in computers store the calibration constants and perform

the bilinear transform to display the corrected reflection coefficient. Specifications are still

often quoted, however, in terms of effective directivity, source match, etc. This method of

specification makes sense due to a property of the bilinear transform: if F' is a bilinear

transform of F, and F' ' is a bilinear transform of r', then F' ' is a bilinear transform of r.

Thus, if there are errors in determination of the calibration coefficients above, and the

transform is applied to the measured data, one may still be assured that the result is a

bilinear transform of the true F, and this bilinear transform can be classified in terms of the

quantities on a signal flow graph like that of Figure 2.5.

2-7

DTRgIB.AESPNPI

__ DTW-8944-91003

If it is assumed that perfect calibration standards are used, and the terms of the bilinear

transform are found without error, then the only sources of error remaining in the system are

those due to noise and nonlinearities in the vector voltmeter.

In the vector voltmeter, the test and reference microwave signals are down-converted to

intermediate frequencies of a few MHz or hundreds of kHz by a sampling mixer. At the i-f,

the test signal is split into two components, one in phase with the reference signal and one in

quadrature with it. From these two components, the real and imaginary parts of the complex

ratio are derived. If the gains of the two channels for the test signal are not precisely

matched, or if the quadrature signal is not truly orthogonal to the in-phase signal, then errors

will result which cannot be calibrated out by the linear procedures described above.

Since the i-f circuitry needs only to be adjusted for operation at a single frequency, however,

sufficient precision can be achieved. In modern computer-corrected network analyzers, the

errors due to these nonlinearities are less than the errors resulting from lack of repeatability

of the microwave connectors used to connect the device under test to the network analyzer.

This lack of repeatability - the inability to exactly match all the connectors on all the

calibration standards - is the factor limiting accuracy of reflection measurements with these

analyzers.

2.1.2 S-Parameter Measurements with the Four-Port Network Analyzer

The situation is a bit more complicated when the S-parameters of an unknown two-port are

to be measured. Transmission as well as reflection must be measured. A setup for making

this measurement is shown in Figure 2.6.

The test set contains a reflectometer like that described above. Port 1 of the device under

test is connected to this reflectometer test port. Another port, the "transmission return"

receives the signal emerging from port 2. A coaxial relay selects which signal is presented to

the vector voltmeter for the complex ratio measurement. To perform a full S-parameter

measurement, the unknown two-port must be flipped end-for-end once during the

measurement, and the coaxial relay switched each time to observe the reflection at both the

network's ports, and the transmission through it in both directions.

This gives a total of four measurements. Expressions will be derived here for the values

indicated by the vector voltmeter for each of these measurements in terms of the

S-parameters of the device under test. These will then be inverted to yield expressions for

these S-parameters in terms of the measured quantities.

2-8
DTR91B.AES,'WP4

__ DTW-8944-91003

Vector

voltmeter

I
I -_oZsdotion pads,_'

signal I arched
source I directional =/

I couplers L
I
L

Reflection

test port
l= -----1

Reflection-
ira nsm ission
test unit

r=- _----i
test port

__ Isolationpad

Device
under

test

Transmission

Figure 2.6 A reflection-transmission test set for full S-parameter measurements using a

4-port network analyzer.

2-9

DTR91B.AE5/WP 1

DTW-8944-91003

The reflection measurement is the same as that described in the previous section, except

that here the measurement is of the reflection coefficient of port 1 of the two-port with its

port 2 terminated in f'L, the impedance of the transmission return. This reflection coefficient,

['1 is given by

S12S2 IFL (2.19)

F1 = Sll + 1 - $22[' L

where the S-parameters are those of the 2-port that is being measured. Substituting this into

equation (2.10) yields

s[1 =
B

S12S21[' L

Sll+ 1 - S22FL

SI2S21F L

Sll + 1 - S22FL

+ A

+ C

(2.20)

{SII - [`LA] + A [I - $22[`L]

B [Sll - ['LA] + C [I - S22FL]

(2.21)

where S 11 is the value indicated by the vector voltmeter and z_- S 11 $22 - $12 $21 is the

system determinant of the two-port being measured.

When performing the transmission measurement, port 2 of the device under test is

connected directly to the vector voltmeter, so the meter measuresb5/b 4. To derive an

expression for b5/b 4, equation (2.6) is first rearranged to give

i - M2T F

a I = b 2
MIT

(2.22)

The subscript "T" is added to the coefficients of this expression because, in general, when

the coaxial switch is moved from the reflection to the transmission position, the values of the

K's, L's and M's in equations (2.1 - 2.8) will change, due to a change in the reflection

coefficient seen looking out port 3 of the four-port network. The value of r L, the reflection

coefficient of the transmission return, will also change in general when this switch is moved,

to a value of rLT.

2-10

DTR91B.AE5/WP4

DTW-8944-91003

This noted, the derivation of b5/b 4 continues by substituting (2.22) into (2.4) to give

1

b 4 - [KIT (MIT F]b 2HIT + K2T - M2T KIT)
(2.23)

= P(BTF + CT)b 2 (2.24)

where B T and C T have the same functional form as B and C in equation (2.10), but with T

subscripts on the L's and M's.

The value of [" in (2.22 - 2.24) above is the reflection coefficient looking into port 1 of the two-

port being measured when its second port sees I"LT. Using (2.19), the expression for b 4

can be expanded to give

[I SI2S21['LT] + CT] b2b4 = P BT SII + T -- S22FLT
(2.25)

An expression for b 5 can be written in terms of b 2, as well:

NS21

= b 2 (2.26)b5 1 - S22FLT

where N is the gain of the path from the transmission return port to the vector voltmeter's

port.

Dividing (2.26) by (2.25) gives

NS21

b5 1 1 - S22FLT

b 4 P [SI2S21FLT

BT[SII + 1 - S22FLT

1

P

+ CT

NS21

BT[SII - ['LTA] + C T (i - S22rLT]

(2.27)

(2.28)

DTR918.AES/WP4

2-11

DTW-8944-91003

Applying the offset and gain terms of the vector voltmeter (S' 21 = CO + C1 b5/b4) gives

S_I = D +
B T (SII

ES21

- FLTA] + C T [i - S22FLT]

(2.29)

where S_1 is the value indicated by the vector voltmeter when the coaxial switch is in the

transmission measurement position. Equations (2.21) and (2.29) are two equations in the

unknown S-parameters resulting from the measurements. Flipping the two-port under test

end for end and measuring it in the reverse direction yields two more equations.

(s22- rzA] + A (i- sllrL) (2.3oi
s_ = B[s22 _ rj,] + c (_- s_r_,]

ESI2

s{2= D+B_[s22_ r_,,,1+c_i_- s_r_,_l (2.3_)

Equations (2.21) and (2.29 - 2.31) give four equations in the four unknown S-parameters.

Unfortunately, these equations are nonlinear, and cannot be inverted in closed form to give

the S-parameters [2]. This difficulty is removed, however, if r L, B and C do not change when

the vector voltmeter is switched from reflection to transmission measurement. Taking r L =

FLT, BT= B and C T= C the above equations can be solved. This inversion yields

expressions for the true S-parameters in terms of the measured values:

= _2[A - cs{1](ss_2 - 1) - r lAB - c]2(s{2 - D]IS_I - D) (2.32)

s_ _2[_s_-_](_s_ _]-r= (s{2-_)(S_l-_)

s12 E2[BS[II](BS_2- I]-FL (S{2-D)[S_I-D]

= E2[A- CS_2][SS{1- 1] - rT,[AB- C]2(S{2- D)[S_z- D) (2.35)
S_ _(_S_ _](BS_ _] - r_(_ - _' - - L] (S[2- D][S_I- D]

2-12

DTRg1B.AES/WP4

-- DTW-8944-91003

In order to use these closed-form solutions and avoid an iterative calculation at each

frequency point of the measurement, the hardware of the system is engineered to isolate the

detector switch from the RF measurement ports of the analyzer. Attenuators are placed

between the four-port network and the vector voltmeter, and between port 2 of the device

under test and the transmission return port, as indicated in Figure 2.6. Also, the input port of

the vector voltmeter is matched to the line as well as possible, and switches that terminate

unselected lines in 50 It are used.

With the assumption of switch-independence, then, only six complex constants, A, B, C, D,

E, and I"L are required to model the linear systematic errors of the reflection-transmission

test set. The error model for the test set can again be drawn as a signal flow graph, as

shown in Figure 2.7. The three error terms noted above have not changed, but three new

ones have been added. EL is the load mismatch term, related to the mismatch of the

transmission return port of the analyzer. ET is the gain of the transmission return path. EX

is related to the vector voltmeter's offset term. The results above can be rewritten in terms of

this error model to give

EXF

al b2 b'
a _

1, 1 $21 ET F 2

EDF ESF S n $22 k I ELF

ERF 812

a 2

Figure 2.7 This flow graph shows the error model for the reflection-transmission test set.

2-13
OTR91B.AE5/WP1

DTW-8944-91003

11

-- E t _[s -i1[1+[s22. ol .ER,sjl
Is'-ED]][11 I+IS 2-ED+ E E

R R

S I

21 s,]12 X. EL.%-

-EllS-El:]T X. 12 X Eg s
T

(2.36)

S21

[S' - E

Ii D
1 +

E R

i + s,_E]]is 1_Ex]22 %" D (Es- EL) ET

[E]Es][isETs_2- % _. x
E

1 + --R

(2.37)

with similar results for S 12 and S22.

So six complex constants (at each frequency of interest) are sufficient to completely

characterize the errors of this type of network analyzer. These constants are found by

measuring six known standards.

In addition to the assumption of switch-independence, another assumption has been made

to arrive at the result above. It is assumed that the only coupling between the reflection and

transmission test ports is through the network under test: there are no RF leakage paths (the

"leakage path" that gives rise to the D term in (2.29) is in fact just a result of the offset term in

the vector voltmeter's response). The assumption of no RF leakage is good in most

systems, since coaxial relays, which have very high isolation, are typically used to switch the

signal paths. If significant leakage paths do exist, the expressions above are invalid and the

closed-form solution impossible.

Finally, for the sake of thoroughness, Figure 2.8 shows the architecture of a full S-parameter

test set. This is the configuration used in such state-of-the-art network analyzers as the

Hewlett-Packard 8510. It consists essentially of two transmission-reflection test sets of the

type just discussed placed back to back. Another coaxial switch selects which end of the

setup receives the test signal. Thus, there is no need to flip the device under test end for

end. This improves measurement speed and accuracy. As long as the detector switch is

isolated from the network as described above, an analysis similar to that above can be

performed to yield closed-form expressions for the S-parameters. The analysis is essentially

performed twice, once for each position of the source switch. The result is two signal flow

graphs like that of Figure 2.7, and an error model which contains twelve complex constants.

This is the "full twelve term error model" which is often mentioned in connection with these

analyzers.

2-14

DTRglB.AE,5_NP4

DTW-8944-91003

I Vector 1Voltmeter

+',T
o c I I

%__

Figure 2.8 A full S-parameter test set using the 4-port network analyzer.

So in summary, four-port type network analyzers measure the S-parameters of two-ports by

using a single vector voltmeter with an arrangement of switches and directional couplers to

route the appropriate signals to the voltmeter. As long as the networks used satisfy

requirements of switch independence and isolation, the S-parameters of the unknown device

can be found from the measured data.

As will be seen in the next section, things are simplified somewhat if two vector voltmeters

are included in the system, and the number of switches reduced. This is the approach taken

when six-port network analyzers are used to measure S-parameters.

2-15

DTRg1B.AES/WP1

-- DTW-8944-91003

2.2 Six-Port Network Analyzer Theory

It was shown in the previous section that if the complex ratio, b3/b 4, of two voltage waves

emerging from a four-port network can be determined, then the reflection coefficient r of the

unknown load connected to the four-port's test port can be calculated. The six-port network

analyzer allows b3/b 4 to be determined without the use of a vector voltmeter. This reduces

the cost and complexity of the system.

Figure 2.9 shows the general six-port network analyzer configuration[3]. Only microwave

power detectors are used in this instrument. These are square law detectors; that is Pi

_lbil 2, i = 3..6. By measuring the magnitudes of the voltage waves emerging from port 3, 4,

5 and 6, and doing some trigonometry, the complex ratio of the wave emerging from port 3

to that at port 4 can be calculated. This reduces the six-port to an equivalent four-port

network analyzer, which may be calibrated as described in Chapter 2.

The equivalence of the six-port and the four-port analyzers can be seen by noting that the

addition of ports 5 and 6 does not change any of the arguments presented in the previous

section. One can think of ports 5 and 6, and their terminating impedances being absorbed

into the network, leaving a four-port network.

Figure 2.9 The six-port network analyzer uses only power detectors to determine the

complex ratio a2/b 2 at its test port.

2-16

DTR9113.AE5/WP1

The six-port network, with power detectors installed, then, is like a four-port network with a

built-in vector voltmeter. Since power detectors are relatively inexpensive, it is usually

unnecessary to switch-multiplex them between two six-port networks as was done with the

vector voltmeter in the four-port measurement systems described above, the self-contained

reflectometer module becomes the basic building block of measurement systems using the

six-port network analyzer. As will be seen below, this facilitates measurement architectures

and procedures different from those used with the four-port system.

As in Section 2.1, the theory of the reflectometer will be described first, followed by that of

the S-parameter measurement system.

2.2.1 Reflection Measurements with the 6-Port Network Analyzer

With the reflectometer of Figure 2.9, the goal is to find the ratio of b3/b 4. This quantity is

defined as w. Once the complex ratio w is found, the same calibration and measurement

procedures as were used for the four-port network analyzer can be applied. For this reason,

finding w from the six-port's power detector outputs is termed a six-port to four-port

conversion. Although w is a bilinear transform of the desired quantity r, the complex

w-plane is the most convenient in which to work for many of the calculations related to

calibration and measurement with the six-port.

The key observation for making the six-port to four-port conversion is that the voltage waves

emerging from ports 5 and 6 of the six-port are related to those from ports 3 and 4 in a

simple way [4]:

b 5 = Kb 3 + Lb 4

b6 = Mb 3 + Nb 4

Rearranging and taking magnitudes gives

1 b3
Jr

1 b 3
Jr

(2.38)

(2.39)

(2.40)

(2.41)

2-17
DTR91B.AEg/WP1

__ DTW-8944-91003

Taking w = b3/b 4, these expressions can be written as

1
Iw - w! I - IKI

1

I w - w21 - IMI

(2.42)

(2.43)

(2.44)

where w 1 = -I_/K and w 2 = -N/M. In terms of the powers measured at the various ports, this

gives

2 P

lwl = 3/P 4
2.45)

lw - Wl12 = _ P5/P 4

lw w212 P6- = P /m4

2.46)

(2.47)

In the complex w plane these are just equations of circles, as shown in Figure 2.10. So with

the powers at ports 3, 4, 5 and 6 known, the problem of finding the complex quantity b3/b 4

and reducing the six-port to an equivalent four-port is just one of finding the intersection of

three circles.

The more difficult problem is that of finding the calibration constants, w 1, w 2, _; and p. This

requires an additional level of calibration for the six-port. First, a six-port-to-four-port

calibration determines these constants, and then a four-port calibration procedure which may

be similar to that described in section 2.1 completes the system calibration.

Interestingly enough, no precision calibration standards are required for the six-port-to-four-

port calibration. A constraining relationship can be found between the calibration constants

based solely on the linearity of the six-port network. This relationship allows the calibration

constants to be determined by observing measurements of a few roughly-known reflection

coefficients. The values of the calibration constants determined are independent of the

particular reflection coefficient values used for the calibration.

2-18

[:)T RgI1B.AE 5/WP4

-- DTW-8944-91003

Im(w)

4

w Re(w)
1

4

Figure 2.10 Outputs of the six-port's power detectors give a family of circles that can be
solved for the complex ratio of the signals at two of the detectors.

2-19
DTR91B.AE_!NP1

DTW-8944-91003

The procedure for deriving the constraining relationship, as outlined by Engen [5], is to solve

(2.46) and (2.47) to give the real and imaginary parts of w in terms of the measured powers

and the calibration constants. Then, using (2.45), (Re w) 2 + (Im w) 2 = P3/P4 eliminates the

dependence on w altogether, leaving the desired result.

Expanding (2.46) gives

P5
- .) = _;--

(w - w I) (w* w I P4
(2.48)

lwl
2 2 P5

* - w w* + Iw I = _; y4.4- WWl 1 1
(2.49)

lwl

P
= 5

2 _ 2R (ww[) + lW112 _ _---e
4

(2.50)

Substituting (2.35) into (2.50) and expanding Re(wW 1.) gives

P3 2 P5

-2 [(Re w)(Re Wl) + (Im w)(Im Wl)] + lWll = _ P4P4

(2.51)

which is a linear equation in Re w and lm w. Performing the same operations on (2.47)

gives

P3 2 P6

- 2 [(Re w)(Re w 2) + (Im w)(Ira w2)] + lw21 = P P4P4

(2.52)

These two equations can be solved for Re w and Im w to give

Re w -

1 (Im w)(lw212 + P3/P4- pP6/P4) + (Im w2)(_ P5/P4-P3/P4-1WlI2)

2 (Re w 2) (Im w I) - (Re w I) (Im w 2)

(2.53)

1
Im w = - --

2

2

(Re Wl)(lw21 + P3/P4 - pP6/P4) + (Re w 2) (_ P5/P4-P3/P4-1Wl I

(Re w 2) (Im w I) - (Re w I) (Im w 2)

(2.54)

2
)

2-20

DTRg1B.AE5/WP4

DTW-8944-91003

Squaring these and adding them gives, after some lengthy algebra,

a 2 [P l2 2+ b_ 2 + cp

P3

a(a-b-c)_4 + b

+ (a-b-c)

b-a-c)

P
5

+ c (c-a-b

4

P6

P p4 +

abc = 0

(2.55)

where

2
a = lwI - w21 (2.56)

2
b = lw21 (2.57)

2
c = IWll (2.58)

Equation (2.55) gives the relationship between w 1, w 2, _; and p and the power readings

observed for any measured reflection coefficient. From here, the calibration can proceed in

one of two ways. Observing nine different values of reflection coefficient, and inserting the

observed values of power into (2.55) generates a 9X9 matrix, which can be solved to give

the values of a/(abc), b_;2/(abc) c(c-a-b) p/(abc). In order to find a p, however, this

third-order set of equations must be solved simultaneously, an iterative process which does

not always converge to the proper values.

There is an alternative approach, pointed out by Engen [5], which yields the values of a..... p

in closed form with as few as five observations of reflection coefficients. The assumption

that results in this simplification is that all of the values used in the calibration lie along a

single circle in the w-plane. This can be achieved experimentally to a good precision

through the use of a sliding short circuit. Sliding short circuits are readily available in coaxial

transmission lines and rectangular waveguides. As the short circuit moves from point to

point in the transmission line, it traces out a circle in the reflection coefficient plane (Irl = 1).

A bilinear transform always carries a circle into a circle, so in the w-plane, another circle is

traced out, Iw-Rcl 2 = R2.

2-21

DTRg1B.AE5/WP4

DTW-8944-91003

The situation is shown in Figure 2.11. Only one measurement center, w 1, is considered in

the first stage of the calibration. It can be assumed that this first center lies on the w-plane's

real axis. This simply amounts to an arbitrary choice of the phase of b3. Since the phase

quantity to be found is the _,hase difference between b3 and b 4, this does not affect the

problem. Choosing the phase of w 1 sets the value of the phase ofw 2, which must be found

later in the procedure.

A relationship similar to (2.55) between the observed powers and the calibration constants

must be found. This can be done most easily by observing that the equations that define the

present case, Iwl 2 = P3/P4, Iw-w 1J2 = _;P5/P4 and Jw-RcJ2 = R2 differ from (2.45-2.47) only

in the last equation. Thus, the result of eliminating w from these equations can be found by

substituting R c for w 2 and R2 for p P6/P4 in equation (2.55). This gives

2 2

+ F = 0 (2.59)

where

A = a' (2.60)

B = _ (c-a' -b')/2 (2.61)

C = _2b' (2.62)

D = [R 2(b'-a'-c) + a' (a'-b'-c)]/2 (2.63)

E = _;[R2(a'-b'-c) + b' (b'-a'-c)]/2 (2.64)

F = [R 4 + R2(c-a'-b ') + a'b']c (2.65)

and where

2
a' = lwI -R I (2.66)c

2
b' = IR I (2.67)

c

2

c = lwI I (2.68)

1

2
IKI

(2.69)

2-22

DTRglB.AES/WP4

__ DTW-8944-91003

Im(w)

R C

w Re(w)
1

4

Figure 2.11 The sliding short circuit, used in the first stage of the the six-port calibration,
traces out a circle in the complex w-plane.

2-23

DTR91B.AEg/WP1

DTW-8944-91003

Surprisingly, as will be seen below, (2.60-2.65) can be solved in closed form to give a', b',

c, _;and R 2. First, however, values of A F must be determined experimentally.

Application of a standard test [6] to (2.59) shows that it is the equation of an ellipse in the

P3/P4, P5/P4 plane. This ellipse is constrained to the first quadrant of the plane. Thus,

A F can be determined by least-squares fitting a conic section to the observed pairs

(P3/P4, P5/P4), and then testing to assure that the resulting coefficients give an ellipse in the

first quadrant. A six-port network with the center w 1 badly placed (e.g., w 1 very close to

zero relative to the radius R) can fail these tests. In this case, the observed pairs will lie

along an ellipse that is so eccentric that small measurement errors in the values of (P3/P4 ,

P5/P4) can cause the best-fit conic section to be a hyperbola, or an ellipse crossing out of

the first quadrant. A failure of this type indicates that measurement accuracy of the six-port

at the frequency of the failure would be intolerably bad.

The best fit conic section can be found in a straightforward way. Substituting x = P3/P4 and

y = P5/P4 into (2.59) and dividing through by F gives

A 2 B C 2 D E

--Fx + 2 [xy + [y + 2 [x + 2 [y + 1 = 0 (2.70)

The error to be minimized can then be written as

= T. x + 2 + --Yi + 2 x + 2 -- 1 (2 71)
i i _ xiYi F _ i F Yi +

To minimize this error, the partial derivatives a _/a(A/F) a Ua(E/F) are taken and set equal

to zero. This yields five linear equations in the five unknowns A/F E/F. Observing at least

five different values of reflection coefficient, and solving a 5X5 matrix, then, yields values of

A/F E/F. Given these values, the task remaining is to solve (2.60 - 2.65) for a'..._;.

This is achieved by first making the following definitions:

= (R2 + a')/_

= [(R 2 - a')(R 2

7 = R2 + b'

6 = (R2 - a')/_

E = R 2 - b'

- b') + 2R2C]/._

(2.72)

(2.73)

(2.74)

(2.75)

(2.76)

2-24
DTR91B.AES/WP4

__ DTW-8944-91003

Substitution shows that the quantities _ e can be expressed directly in terms of A F:

BD - AE

2
AC - B

-- (X (2.77)

DE - BF

2
AC - B

(2.78)

BE - DC

2 - 7
AC - B

AF - D 2 _ 62
2

AC - B

(2.79)

(2.80)

CF - E2 2
- e (2.81)

2
AC - B

It is observed that the numerators and denominators of the left sides of (2.77 - 2.81) can be

divided through by F2 to yield expressions only in terms of A/F E/F. Thus the values of

,z..... E 2 can be found directly from the sliding short calibration data. The expressions for

ot..... E2, (2.72 - 2.76) can in turn be solved for a', R2:

2 (_- 6)(9" + e)
a' = lw I -R I = (2.82)c 2 (o_ + 6)

2 9' - e
b' = IR I - (2.83)

C 2

2 _ - 6e
C = Iwll - (2.84)

9' + e
_; - (2.85)

¢x + 6

2 9' + e
R - (2.86)

2

So the total six-port-to-four-port reduction is a three-step process. First, the sliding short

calibration data are summed into the 5X5 matrix derived from (2.71). Solving this gives

A/F E/F. Next, these values are used in (2.77 - 2.81) to give values of _ e2. Finally,

these quantities are used in (2.82 - 2.86) to give values of a', R 2, which contain the

calibration constants wanted.

2-25

DTRgl 8,AES/WP4

DTW-8944-91003

There are still problems, however. Since (2.80) and (2.81) only give expressions for 62 and

e2, there is a sign ambiguity in the determinations of 6 and e. Sign ambiguity problems are

inherent in the six-port network analyzer, since only magnitudes squared are measured by

the instrument. Such ambiguities are encountered at several steps of calibration and

measurement, and must be carefully resolved at each step to assure the validity of

subsequent results.

In the present case, it is seen from the definition (2.76) that • is negative if tRc i2 > R 2, that

is, if the circle drawn in the w-plane does not enclose the origin. Similarly from (2.75), 6 is

negative if the measurement center w 1 is outside the circle drawn by the sliding short. This

provides one method of resolving this sign ambiguity using knowledge of the network used.

Assume first that the interior of the I['l = 1 circle maps to the interior of the corresponding

circle in the w-plane. This is the case for most practical six-ports and can be verified by

checking the values of P3/P4 and P5/P4 for some [', I1'1<1 and verifying that the resulting

point falls inside the sliding short's ellipse. Given this, if it is known that]b31..,0 for some

value of l" with I1'1<1, then the Ll"i = 1 circle encloses the origin of the w-plane and e>0. A

similar argument using b5 can be used for 6.

This is the approach taken with the sampled-line network analyzer. The system is

engineered so that none of the Ibil's can go to zero for any r', II'1"=1, ensuring that e<0 and

6<0.

If the properties of the six-port network are not known, this sign ambiguity can still be

resolved, through a clever technique outlined by Engen. One takes all four possible choices

of sign for • and 6. Using the resulting values of the calibration constants and the calibration

data from the sliding short and a matched termination, four parallel calculations of the value

of w 2 can be performed. All the calculations with incorrect sign assumptions yield self-

contradictory results. The one with the correct 6 and e will yield the correct value of w 2.

Given that _ and 6 are found correctly, there is still a sign ambiguity that can not be resolved

through the equations above. This ambiguity is in the sign of Im R c. If it is chosen

incorrectly, the value found by the six-port will be w* instead of w.

Knowledge of the properties of the six-port used provides the best way to find the sign of Im

R c. This is the approach used with sampled-line network analyzer. Otherwise, some

completely independent scheme must be devised, perhaps using the reflection coefficient of

an additional known standard.

2-26

DTR91B.AES/WP4

__ DTW-8944-91003

With these sign ambiguities in the determination of a R2 and Im Rc resolved, there is still

the problem of findingw 2and _. Engen's method described above is an option here.

Another option is to substitute w 2 forw 1 and p for _;, in the above and redo the procedure

used to find w 1 .

This yields w 2 on the real axis, but the value of R c found has a different angle from that

found in the determination of w 1. Rotating the second result for Rc so that it matches the

first rotatesw 2 to its proper angle in the plane of the first solution as well. This is the

approach used in the sampled-line network analyzer. It is fairly simple and allows the results

from the various detector outputs to be compared with uniform criteria in the calibration

procedure.

It is interesting to note at this point that, without any knowledge of w 2 or p, it is possible to

determine w to within a sign. As can be seen by returning to Figure 2.10, the value of w

must be at one of the two intersections of the b3/b 4 circle and the b5/b 4 circle. The b6/b 4

circle simply resolves this ambiguity. If, however, there is another constraint imposed by the

network used, which rules out one of these intersections, then the third circle is unnecessary.

Then only three detector outputs are required to determine w, and the resulting instrument is

known as a five-port network analyzer. The sampled-line network analyzer has this property

and is in many ways an extension of the five-port network analyzer concept.

If additional accuracy is sought in determination of the calibration constants, the values

found through the closed-form approach outlined above can be used as first estimates of the

coefficients of (2.45). An optimizer can then be used to minimize the sum of the squares of

the values found in evaluating the left side of (2.45) for all the reflection coefficients observed

in the calibration procedure.

An important determinant of system accuracy is the geometric placement of the

measurement centers around the I rl = 1 circle in the w-plane. This placement is set by the

particular six-port network used in the implementation of the network analyzer. Clearly, if all

the measurement centers are close together compared to the unit circle, then triangulating

from them to find r will yield poor accuracy. Figure 2.12 shows an implementation used at

NBS [7], and the resulting placement of the measurement centers.

This implementation has the advantage that b4 depends only on b2, to the limit of the

directivity of the hybrids used. This makes b3/b 4 approximately a linear transform of r

instead of a bilinear transform, which can simplify some of the preliminary calculations. The

regular spacing of the measurement centers around the unit circle results in good accuracy

for this instrument.

2-27
DTRgl B,AE5/WP4

- DTW-8944-91003

-JTblr + (i + j)v_] -_ Tb[r - (1 - j)v_]

Q

P4

-b(F- jv') _j b_23

Q Q

av_
2

Figure 2.12

H

b

6 dB Directional Coupler

q3

• Circle

I

q5 q6

The six-port network analyzer as implemented at NBS. The boxes marked 'H'
are 180" hybrid networks and those marked with 'Q' are quadrature hybrids.

2-28
DTR91B.AE_NP1

DTW-8944-91003

As has been seen, the six-port network can be calibrated to measure the complex ratio of

b3/b 4. This ratio must then be calibrated to yield the value of r = a2/b 2. As noted above,

this requires determination of the three complex constants of the bilinear transform relating r'

and b3/b 4.

If a single six-port reflectometer is used, then the same calibration options are available as

with the four-port reflectometer. Three known standards are measured, and the results can

be inverted to give the complex constants of the bilinear transform. If two six-ports are used,

as in an S-parameter measurement system, however, other options are available, as will be

seen below.

2.2.2 Dual Reflectometer Calibration - The TRL Scheme

With a single reflectometer, the final accuracy of a calibration depends on how accurately the

reflection coefficients of a set of precision terminations are known. To set the reference

plane, the reflection coefficient of at least one of the standards must be known to a precision

greater than that of the network analyzer over the entire frequency range of operation. Even

with the simplest of calibration standards, the short circuit, this is often impractical. A set of

two reflectometers, however, can "calibrate each other" through a procedure developed at

the National Bureau of Standards [8] known as the "thru-reflect-line" or TRL calibration

procedure. In this procedure, the precise properties of the calibration standards need not be

known, and are in fact derived as a by-product of the calibration. Two standards are used

for this procedure. One is a precision coaxial line of approximately known length and the

other is a termination with a reflection coefficient different from zero, the exact value of which

is only approximately known.

As it turns out, the requirement of having two reflectometers for the TRL procedure is not a

drawback. It will be seen below that two reflectometers are used to construct an

S-parameter measurement system using six-ports. With two six-ports present in the system

in any case, the fact that they can calibrate each other is a bonus.

The TRL calibration procedure is implemented on the sampled-line network analyzer, and

will be described briefly here.

The TRL calibration procedure is only a reflectometer calibration procedure. Given two

reflectometers that can measure b3/b 4, TRL provides the coefficients of the bilinear

transforms to give the r's connected to each reflectometer. Additional calibration is required

to allow the two reflectometers to measure the S-parameters of a general two-port network.

DTR91B,AES/WP4

2-29

__ DTW-8944-91003

The three measurements used forTRLare shown in Figure 2.1 3. As described in

Section 2.1, an uncalibrated reflectometer can be represented as an ideal reflectometer with

an error two-port between its port and the measurement port. This representation is used in

Figure 2.13. The six-port to four-port conversion described above allows the two

reflectometersto measure their respectiveb3/b4's. The goal of the TRL calibration

procedure is to determine the parameters of the error boxes A and B.

In the first measurement, the two reflectometersare connected port to port. This

measurement yields the cascade of the two error two-ports. In the second measurement,

the two reflectometers look at each other through a length of precision transmission line,

which by hypothesis contains no internal reflections or reflections from its ports. The length

of this line does not need to be known exactly, but for numerical stability, a value near a

quarter wavelength at the measurement frequency is desirable. In the final measurement, a

nominal short circuit is connected to the two reflectometer ports.

When the two reflectometers look at each other through a given two-port, their responses in

terms of that network's S-parameters can be written as follows:

bI = Slla I + Sl2a 2 (2.87)

b2 = S21a I + S22a 2 (2.88)

where, for the present case (a 1 a2) T = (b4 b_,)T and (b 1 b2) T = (b 3 b_) T.

by a 1 and (2.88) by a2 and eliminating a2/a 1 gives

Dividing (2.87)

where

w2 Sll + wI $22 - A = WlW 2 (2.89)

and

A = Sll S22 - S12 S21 (2.90)

wI = bl/a I = b3/b 4

w2 = b2/a2 =

(2.91)

(2.92)

2-30

DTR91B.AEShNP4

DTW-8944-91003

Ideal

Network

Analyzer

Error

Box

A

Error

Box

B

Ideal

Network

Analyzer

Ideal

Network

Analyzer

Error

Box

A Error t

Box ----

B

Ideal

Network

Analyzer

Ideal

Network

Analyzer

Error

Box

A
- E-

Error
Box

B

Ideal

Network

Analyzer

Figure 2.13 In the TRL calibration procedure, the coefficients of the error boxes A and B
of two reflectometers are determined by making the three measurements
shown here. A straight through, a length of line and a high-reflection load of

approximately known value are used.

2-31

DTR91B.AEg/WP1

- DTW-8944-91003

By observing values of w 1 and w 2 for three values of a2/a 1, a set of three linear equations in

three unknowns can be generated, and solving these gives the values of S 11, $22 and Z_. In

the laboratory, the value of a2/a 1 is changed by placing a variable phase shifter or variable

attenuator between one of the reflectometer heads and the signal generator. In practice,

more than three values of a2/a 1 are used and a least-squares solution is found.

Since the TRL procedure involves cascaded two-port networks, it is convenient to work in

terms of the wave cascading parameters or T-parameters. The T-parameters are defined by

(2.93)

la2]= (2.94)
T b2

The T-matrix for the cascade of two networks is just the product of the T-matrices of the two

networks.

The T-matrix can be written in terms of the S-matrix as

[TllT12]l S11]
T21 T22 $21 -$22 1

(2.95)

This result is interesting in that it shows that by solving a set of equations like (2.89) all the

T-parameters of an unknown network can be found to within a multiplicative factor, 1/$21.

As will be seen below, the TRL method deals only with ratios of T-parameters, so all the

required information can be found in this way. With this recognized, the description of the

TRL procedure may continue.

If A and B represent the T-matrices of the two error boxes, A and B, respectively, then for the

"thru" connection, the fictional two-port U that is observed is given by

= A B (2.96)

For the "line" connection, the observed two-port D is

= A L B (2.97)

2-32
OTR91B.AESNVP4

-- DTW-8944-91003

where L represents the T-parameters of the line inserted between the two reflectometers.

Equation (2.96) can be solved for B to give

B =-1= A _ (2.98)

Inverting both sides of (2.98) and post-multiplying (2.97) by the result gives

- =-1 =-1
D U _ = A L B B (2.99)

X A = A L (2.100)

where

,_ = _ _ -1 (2.101)

An assumption must be made about the value of L, the T-parameters of the length of line

used as a calibration standard. It is taken to be

Z (2.102)

This assumes that the line is uniform, not necessarily Iossless, and that there are no

reflections from it (S 11 = $22 = 0).

Given this assumption, equation (2.100) can be expanded to give

-71
Xll All + XI2 A21 = All e (2.103)

-_i
X21 All + X22 A21 = A21 e (2.104)

Xll AI2 + X12 A22 = A21 e71 (2.105)

X21 AI2 + X22 A22 = A22 e71 (2.106)

2-33

DTRglB.AES/WP4

-- D TW-8944-91003

Dividing (2.103) by (2.104) and (2.105) by (2.106) gives

X21 [All] 2 + X22- Xll

X12 [A21] X12 [A21J

- 1

- 1

= 0 (2.107)

= 0 (2. 108)

So it is seen that the values A 11/A21 and A 12/A22 are solutions of the same quadratic

equation. The coefficients of this equation can be determined from the measured b3/b4's for

the thru and line measurements via (2.89) and (2.101).

It is easy to see that (A 11/A21) ,_ (A12/A22). From (2.95) this would require that the error

box A have $12S22 = 0 so there would be no transmission through the box.

Thus (A 11/A21) and (A12/A22) are the two distinct roots of the quadratic equation. The

question of root choice then arises again: which root represents which ratio? Approximate

knowledge of the properties of the line calibration standard can be used to answer this

question.

Dividing (2.106) by (2.104) gives

x21 {AI2JA22]÷ x22
e (2.109)

xl2 [A21JA11]+ x11

so if the length of the transmission line used as the line standard is known fairly accurately,

the value of e2"/I can be calculated, and this can be used to resolve the root ambiguity. This

method has the advantage that it depends only on quantities found in the course of the TRL

calibration procedure, but unfortunately it is not foolproof. As stated above, the transmission

line standard is chosen to have a phase delay near +90". It is a low-loss line, so le2711:1.

This places e271 near +1. The two possible root choices, when inserted in the right side of

(2.109), yield values that are reciprocals of each other. If the phase delay of the line is too

near +90 °, then e 271 and its reciprocal cannot be easily distinguished, and measurement

errors may lead to an improper root choice.

2-34

OTR91B.AES,'WP4

DTW-8944-91003

An alternative approach usesthe resultfoundin Section 2.1,thatforthe reflectometer with

errorbox A,

_aF+b
wI (2.110)cF+l

where F is the reflection coefficient measured by the reflectometer and

a = All/A22 (2.111)

b = A12/A22 (2.112)

c = A21/A22 (2.113)

A rough calibration using three impedance standards, such as a short circuit, an open circuit

and a matched load, can be performed to find approximate values of a, b, and c. Only one

of the roots of (2.107) and (2.108) will be close to b, and this serves to resolve the root

ambiguity. This method does not suffer the problems of the previous one, but does require

additional known, independent calibration standards, which are not easy to come by in all

types of transmission line.

Inspecting (2.110 - 2.113), it is seen that b and a/c have been determined from the roots of

the quadratic equation (2.103). All that remains to characterize error box A is to determine

the value of a. Rearranging (2.106) gives

w I b
a = (2.114)

r(1 - WlC/a)

So, if one uses one precision standard, say a short circuit, then (2.114) can be solved for a

and the calibration of error box A is complete. This approach is known as the "thru-short-

delay," or TSD calibration procedure. Error box B can then be determined from (2.96).

For the TRL procedure it is assumed that F is not known precisely. More manipulation

shows that this knowledge is not required for the determination of a. Equation (2.96) can be

rewritten as

2-35
OTR91B.AEQ/WP 1

DTW-8944-91003

_ _ I_c_1[_°_1=_ I_ ;I (2.115)

where

a = All/A22

b = AI2/A22

c = A21/A22

= BII/B22

= BI2/B22

7 = B21/B22

d = UII/U22

e = UI2/U22

(2.116)

(2 117)

(2 118)

(2 119)

(2 120)

(2 121)

(2 122)

(2 123)

f = U21/U22 (2.124)

By premultiplying both sides of (2.115) by A -1 and expanding, it can be shown that

f - dc/a (2. 125)
9'- 1 - ec/a

e - b (2. 126)
/ - d - bf

d - bf
aoz - (2. 127)

1 - ec/a

All the quantities on the right side of (2.125 - 2.127) are known, so 7, #/o_ and ao_ can be

determined. A relationship like (2.114) holds for error box B. It is

w2 + 7
= (2.128)

F(I + w2_/oe)

2-36

DTR91B.AE £_'1NP4

-- DTW-8944-91003

Assuming that the same F is connected to both reflectometers during the calibration

procedure, F can be eliminated from (2.114) and (2.128) to give

(wI - b) (i + w2_/_)
al_ = (2.129)

(w2 + 3') (I - WlC/a)

and finally, (2.129) can be combined with (2.127):

/ (wI
a = ±,

(w2

- b) (I + w2_/_) (d - bf)

+ 7) (I - WlC/a) (i - ec/a)
(2.130)

and

d - bf
,_ = (2.131)

a (i - ec/a)

The sign ambiguity in (2.129) can be resolved by approximate knowledge of F. Use of a

short circuit for [` is convenient here. Good short circuit standards are readily available in

coaxial lines and waveguides, and can be constructed without great difficulty in many of the

transmission lines used in microwave ICs.

So the final result of the above is that two reflectometers can calibrate each other without the

use of high-precision calibration standards. The one big assumption made in the preceding

development is that the transmission line standard used is reflectionless. The effects of

reflections in this standard have not been fully evaluated, but experimental results at the

National Bureau of Standards indicate that the TRL procedure yields a very accurate

calibration. Typical errors estimated at +0.001 dB in measuring a 20 dB attenuator have

been reported [9].

2.2.3 S-Parameter Measurements with the Six-Port Network Analyzer

Figure 2.14 shows how two six-port network analyzers are used to construct an S-parameter

measurement system. It is assumed here that both six-ports have been calibrated to read

the true ratios, 1"1 (=b 1/a 1) and 1'2 (=b2/a2) at the reference planes 1 and 2. This calibration

may proceed through any of the methods outlined in the previous sections.

Through a procedure identical to that given in equations (3.50 - 3.55) above, then, the

values of S 11, $22 and Z_for the unknown two-port can be determined by observing the

values of ['1 and F2 for at least three different excitations (positions of the phase shifter or

attenuators).

2-37
_TRQIR At: _JP&

DTW,.8944-91003

L_ 6-Port #1

Divider

H H 6-Port #2

Figure 2.14 A full S-parameter measurement system using six-port network analyzers.

In order to find the complete S-parameters, some way of separating A to give S 12 and $21
must be found. Rewriting (2.87 - 2.88) gives

S12 = (rl - S11) a2 (2.132)

a__2
$21 : (r2 $22) al (2.133)

so if the value of a2/a 1 can be found for each measurement, then $12 and $21 can be
found. Some additional calibration is necessary for this determination.

2-38
DTR91B,AEg/WP1

-- DTW-8944-91003

Consider the measurement system of Figure 2.14 as a three-port network with its port 3 near

the generator and ports 1 and 2 being the measurement reference planes as numbered.

Then it can be shown [7] that

--I / /a2 $23] $23 $22 F2 +
aI $21 - SII S--_3} F1 - S12 S13 aI S13

(2.134)

where the sij's are the S-parameters of the measurement system three-port. This can be
rewritten as

a2 a2

al - Cl F1 - C2 F2 n+al C3
(2.135)

which can be rearranged to give

a2 C3 + C 1 F1

aI 1 + C2 F2
(2.136)

With equation (2.136), then, a2/a 1 can be determined from the observed F's for any

measurement. The remaining difficulty is to find the values of the C's. This can be done by

noting that equation (2.135) is linear in the C's. Using at least three known values of I" 1, ['2

and a2/a 1, a system of linear equations is formed which can be solved for the C's.

The values of the [''s to plug into this set of equations are, of course, directly available from

the measurements. The values of a2/a 1 must be derived somewhat indirectly. This is done

by measuring a set of calibration standards for which the S-parameters are approximately

known. A set of precision transmission lines of approximately known length is a common

choice. These lines are reciprocal, and so their complete S-parameters can be found from

the knowledge of S 11, $22 and z_which is found as noted above.

Is121 = Is211 = 4 IZ_ - Sll s221

arg(& - Sll $22)

arg (S12) = arg (S21) = 2 + n=

2-39
DTR91B,AE 5,'WP4

-- DTW-8944-91003

The n _- in equation (2.138) results from the sign ambiguity of the square root. Since in this

case, the length of each of the calibration standards is approximately known, this sign

ambiguity can be resolved by calculating the expected value of arg ($12) and choosing the

sign that gives the value closest to this.

With all the S-parameters for the calibration standards thus measured, equations (2.132) or

(2.133) can be used to find a2/a 1 for each measurement, and determination of the values of

the C's can proceed.

The values of the C's change when the phase shifter or variable attenuators are switched.

Thus C's must be calculated and stored for all possible configurations of the measurement

system.

After all calibration has been completed, measurement of the S-parameters of an unknown

two-port proceeds as follows: the measurement system is stepped through all combinations

of the phase shifter and attenuator positions and the values of the F'S resulting are stored.

These are then summed into a matrix and least-squares estimates of S 11, $22 and Z_for the

unknown network are determined through a set of equations like (2.89). Then the C's are

used to find a2/a 1 for each of the measurement configurations, and calculate S 12 and $21

by solving equations (2.132) and (2.133), respectively. The resulting values of $12 and $21,

respectively, are averaged to yield the final estimates of these quantities.

This is the general procedure. If it is known that the two-port being measured is reciprocal,

then greater accuracy can be achieved by using (2.137-2.138) to find $12 = $21. Then the

results from (2.132-2.133) and (2.136) can be used only to resolve the sign ambiguity

in (2.138).

By changing the positions of the variable attenuators, the value of a2/a 1 can be made

arbitrarily large or small. This can be used to advantage in some measurement situations.

In measuring an amplifier, for example, the signal on the output side of the amplifier is at a

much higher level than that on the input side. Most six-port reflectometers have their best

accuracy when measuring values of F for which IFI<I. By making la2/all approximately

equal to the gain of the amplifier, ratios near unity will be measured by both the input and

output reflectometers.

In summary, two six-port reflectometers can be combined in a system that can measure the

full S-parameters of unknown two-ports. This system has none of the switch-dependency

problems that can occur with the four-port-based systems. As long as the various switches

(attenuators and phase shifters) in the six-port system are repeatable, their effects are

calibrated out.

_ 2-40

__ DTW-8944-91003

2.3 Sampled-Line Network Analyzer Theory

The sampled-line network analyzer is a particularly simple implementation of the six-port

type of network analyzer. It removes the need for the broad band directional couplers used

in the NBS implementations. Also, the sampled-line analyzer uses more detector diodes

than previous implementations and the additional data from these detectors can be used to

advantage.

Figure 2.15 shows the sampled-line network analyzer schematically. It consists of a uniform

transmission line with several power detector diodes connected in shunt across it. The

diodes are resistively isolated from the line to minimize loading effects. An attenuator placed

between the line and the device under test prevents deep voltage nulls from occurring on the

line. Removal of such nulls is important for the instrument's accuracy, as will be shown

below.

The diodes sample the magnitude of the microwave voltage at their points of connection.

The incident and reflected waves, travelling in opposite directions on the line, are sampled

with different relative phases at different points on the line. A six-port type analysis can be

applied to the resulting diode voltages: one diode voltage is chosen as the denominator of

the complex ratio w, and all the others are divided by that voltage. The resulting ratios give

the radii of circles as in Figure 2.10. For n diodes, however, there are (n-l) circles, all ideally

intersecting at a single point in the w-plane. As will be seen below, two circles are used for

the determination of the reflection coefficient with the sampled-line network analyzer. The

two circles used are those from the three diodes with optimum spacing for the frequency

range under consideration. The ambiguity from the two intersections of the circles is

resolved by knowledge of the device under test or by use of an external attenuator.

The diode spacing scheme shown in Figure 2.15 allows extension of the network analyzer's

operation over a broad frequency range. As described above, a set of three detectors

provides two circles that can be used to determine w to within a sign. One circle has its

center at zero in the w-plane, and the other has center w 1. Assuming that some way can be

found to resolve the sign ambiguity, then the requirement for an accurate measurement is

that w 1 be placed in such a way that for any measured r, the resulting circles, centered on

zero and w 1, do not intersect at too oblique an angle.

2-41

DTR91B.AE,_vWP4

__ DTW-8944-91003

Jst octave

I

2nd octave

I I i

3rd octave

I I I

i

p transmission line

_ Microwavesignal generator

=_-

)ower sampling
diodes tl

Q

Unknown

impedance

_,/D converter board

Figure 2.15 The sampled-line analyzer consists of a number of power detectors

distributed along a transmission line. The spacing scheme shown allows
extension of the operation of the analyzer over a wide frequency range.

2-42

DTI_IB.AFO/WPI

__ DTW-8944-91003

Placement of w 1 in the sampled-line analyzer is determined by the spacing of the sampling

diodes. A convenient measure of the "goodness" of a particular configuration is the

sensitivity of the calculated value of F for a given measurement to noise on the detector

voltages. The average noise sensitivity in the detc;mination of F, over all I FI<I was

calculated for a wide range of diode spacings. The results showed that foragiven

frequency, the minimum average noise sensitivity is achieved when the three diodes are

uniformly spaced along the line with one sixth of a wavelength between each pair of diodes.

It turns out that one such diode triple provides good accuracy (noise sensitivity within a factor

of two of the minimum) over about an octave of frequency. When one triple's useful

frequency is exceeded, another triple can be formed by placing a fourth diode halfway

between one pair of diodes in the original triple. This second triple has a frequency range

twice as high as the first, and this method can be continued, to extend the analyzer's

operating range to the upper working frequency of the diode detectors.

This is the fundamental difference between the sampled-line analyzer and previous six-port

analyzer configurations. Previous analyzers used a fixed number of diodes. To extend their

operating bandwidth a broader-band coupling structure was required to provide signals to

the diodes. In the sampled-line analyzer, a simple resistive coupling structure is used. To

extend the analyzer's frequency of operation, additional diodes are added to the system.

Sampled lines have, of course, been used for impedance measurements for many years.

These instruments used sums and differences of powers measured at points along the line

to determine the reflection coefficient of the device under test. A six-port type analysis could

not be applied to the sum and difference data and the loading effects of the samplers were

not calibrated out. Also, since ratios of the measured powers were not used, the

measurements were affected by fluctuations in the signal source's output power.

2.3.1 Placement of the Measurement Centers

Given that the sampled-line analyzer is a type of six-port, the best way to examine its

operation is to consider the placement in the w-plane of the measurement centers w 1, w 2

W(n_2) where n is the number of detectors used.

2-43
DTR91B.AE 5/WP4

- DTW-8944-91003

Figure 2.16 shows the theoretical model of the sampled-line analyzer used to calculate the

positions of the measurement centers and scale factors. It is assumed that the detectors do

not load the transmission line at all. The e's are the electrical lengths of the various sections

of transmission line, and the detectors are numbered as shown. Only four detectors are

shown here, though there may in general be many more. Detectors 3, 4, and 5 are assumed

to have the uniform ;k/6-spacing, and detector i has some arbitrary placement on the line.

No attenuator is placed between the line and the device under test for this analysis.

As in section 2.2,

1

IKI

= K b3 + Lb 4 (2.139)

= + (2.140)

P5 _ 12
_i P - lw wI (2.141)

4

The values of _;1 = 1/I K 12 and w 1 = -L/K are to be found.

The voltage measured by a given sampler is the sum of the left and right travelling voltage

waves on the line at the point where the sampler is connected. Associating this complex

voltage with a single travelling wave value, b i, may seem odd, but it is easy to see that such

an assignment is valid. The sampler could be replaced with an ideal voltage amplifier which

would sample the voltage on the line and produce a travelling wave at its output with an

amplitude equal to the sampled voltage. Keeping this in mind, then, expressions for b3 b6
can be written:

-j2e 4

b4 = b2(I + F e) (2.142)

-j283 -j (84 - 83)

b3 = b2(I + F e) e (2.143)

-J285) -j (84 - 85)
b 5 = b2 (i + F e e (2.144)

-j286) -j (04 - e6)
b6 = b2 (I + F e e (2.145)

2-44

DTR91B.AE,_WP4

DTW-8944-91003

4 3 5 i F

Id

r

Id

r

,- Ir

e_ I

e_ I

Figure 2.16 Model of the ideal sampled-line at a single frequency. The detectors have
infinite impedance. Their response is the square of the magnitude of the
voltage at the point of connection on the line.

DTR91B.AFO/WP1

2-45

-- D'rw-8944-91003

Substituting (2.142-2.144) in (2.139) gives

-j285 -j (84-85) -j283
(l+Fe) e = K(I+Fe

-j(84-e 3) -j284
) e + L(I + Fe) (2.146)

-j (84-e 5) -j (e4+e 5) -j (84-83) -j (84+83) -j284
e + Fe = Ke + KFe + L+LF e

(2.147)

Since (2.147) must be true for all values of £, it can be rewritten as two equations:

-j (84 - e5) -j (e4 - e3)
e = Ke + L

-j(e 4 + 85) -J(8 4 + e3) -j2e 4
e = Ke + L e

2.148)

2.149)

When these two equations are solved for K and L they give

and thus

K

n

sin (84 - 85)

sin (e 4 - 83)

sin (83 - e 5)

sin (e3 - e4)

2.150)

2.151)

W

1 K

L sin (83 - 85)

sin (@4 - @5)

2.152)

2

1 sin (84 - 83)

1 IKI 2 2
sin (84 - 85)

2.153)

An identical analysis for detector i, placed an electrical distance of ei from the load gives

W

sin (83 - @')l

(i - 4) sin (@4 - 8')±

(2.154)

(i - 4)

2
sin

(84 - 83)

2
sin (8 - 8.)

4 l

2-46

(2.155)

DTRglB.AE5ANP4

DTW-8944-91003

Finally, from (2.142-2.144), the expression for w = b3/b 4 can be written:

-j283
b3 1 + Fe -J(84

- e
b4 1 + Fe-J284

- e3)
(2.156)

Figure 2.17 shows these results graphically. The circles of constant I1,1 show how the

bilinear transform maps the 1,-plane to the w-plane. First, F= 0 is mapped to

w=e-J(e4- e3). Since detectors 3 and 4 are assumed to be X/6, thezero reflection

coefficient point maps to e-j_r/3.

The 1,= 0 point maps to aunity-magnitudewforanydiode spacing. The spacing

determines the angle of the resulting w. This must be the case since, when F = 0, there is no

standing wave on the sampled-line, and all detectors observe signals of the same

magnitude. The ratio of samples at any two points on the line then has unity magnitude.

The I1,1 = 1 circle is mapped to the real axis of the w-plane. This can be seen by

substituting F = eJ_ into (2.156). The result is

cos (83 - @/2)
W = (2.157)

cos(e 4 - _/2)

This equation shows that w -., 0 when there is a standing wave null at sampler 3, and w -., =

when there is a null at sampler 4, as must be the case for the sampled-line.

Completing the picture, it is observed from equations (2.152) and (2.1 54) that all the

measurement centers, w 1..... W(n_2), lie along the real axis as well. This can also be seen by

examination of the physical configuration. From equation (2.141) it is seen that w = w 1 is the

point at which P5 goes to zero. On the sampled-line, a zero detector output indicates a

standing wave null. Only unity-magnitude 1,'s produce nulls, and the corresponding w lies on

the real w-axis, as noted above.

So the ideal sampled-line network analyzer transforms the 1, plane such that the region of

I1,1>1 is mapped into the upper half of the w-plane (Im w > 0), and I1"1<1 is mapped to the

Im w<0 region. This has the advantage that when measuring passive circuits, only the data

from three detectors need be used to find the value of 1,. These data give two circles, which

will intersect at two points. The ambiguity in the value ofwis resolved immediately,

however, since only one of these intersections, the one with Im w < 0, corresponds to a

realizable 1,. As noted in section 2.2, this makes the sampled-line network analyzer a "five-

port" network analyzer.

2-47

DTRg18.AES/WP4

__ DTW-8944-91003

Im(w)

I?=1 w 1 F =-j Re(w)

IFf=O.6

Figure 2.17 The sampled-line analyzer maps the ['-plane to the w-plane as shown here.

2 -48
DTR91B.AFONVP1

__ DTW-8944-91003

Having the measurement centers lie along a line in the w-plane is a disadvantage. If it is not

known whether the measured r has a magnitude greater than or less than one, then the

ambiguity cannot be resolved from the diode data directly. Losses in the line and reflections

from the diodes do cause the centers nGt to lie exactly along a line, but the scatter is usually

small and cannot be used reliably to resolve the ambiguity. One method which could be

used to resolve the ambiguity would be to place a directional coupler between the signal

generator and the sampled-line and read the forward- (or reverse-) going wave with a

detector. The directional detector's output could then be entered into the calibration

procedure, yielding a measurement center off the real w-axis.

There is another problem, with the sampled-line analyzer as shown in Figure 2.16. Its

measurement accuracy for I rl = 1 is bad. Re-examining Figure 2.17, for a value of w near

the real axis, all the circles resulting from the measured data intersect at very oblique angles.

Thus, a small error due to circuit noise in one of the circles' radii results in a large error in the

determination of the point of intersection.

This problem is reduced by placing an attenuator between the device under test and the

sampled-line as noted above. The results are shown in Figures 2.18 and 2.19. These show

contour plots of error sensitivity in the r-plane. For three X/6-spaced diodes, define Re r =

f(v 1,v2,v3) and Im r = g(v 1,v2,v3) where v 1, v 2, and v3 are the observed detected voltages.

Then the quantity plotted in the following figures is

[Df]2 _f 2

2 2 2

+I'%1+I'%1
(2.158)

These plots are in the r-plane. The value ofw, with noise added, is found and then

transformed into the r-plane, tt is interesting to note how the transformation process

symmetrizes the error around the origin of the r-plane. The effect of the attenuator is

interesting, as well. The error function is bowl-shaped, rising steeply at the edges. Adding

attenuation between the analyzer and the device under test degrades measurement

accuracy slightly at the minimum of the bowl, but it flattens out the bowl, improving the

accuracy near the edge.

2-49

DTR91B.AE:_'WP4

_ DTW-8944-91003

\

Figure 2.18 Sensitivity of the calculated F to noise in the power detectors over the
IF I<1 region with a 0.5 dB attenuator between the sampled-line and the

device under test.

2-50

DTR91B.AFO/WP1

_ DTW-8944-91003

Figure 2.19 Sensitivity of the calculated [" to noise in the power detectors over the
I['1<1 region with a 3 dB attenuator between the sampled-line and the

device under test.

2-51
DTR91B.AFO/WP1

D TW-8944-91003

An optimum value of attenuator for use with the sampled-line network analyzer when

measuring passive loads has been found. It was found by numerically simulating the

calibration and measurement sequence of the sampled-line, and finding its worst-case

measurement error as a function of frequar_cy. This function was integrated over the octave-

wide frequency interval of a particular diode triple. The integrated worst-case error function

was then minimized over values of attenuator. The best value was found to be 4.8 dB.

2.3.2 Calibration and Measurement Options with the Sampled-Line

Not all of the calibration options available to the general six-port network analyzer are

available to the sampled-line. The most significant of these is the use of a set of arbitrary

unknown standards for the six-port-to-four-port phase of the calibration. As was shown in

Section 2.2.1, equation (2.55) allows determination of the calibration constants - or iterative

improvement of their estimates - through the observation of at least nine arbitrary standards.

Unfortunately, the fact that the measurement centers of the sampled-line lie along a line in

the complex w-plane makes the resulting matrix singular for the sampled-line.

Calibration of the sampled-line must rely therefore on a sliding short circuit and use of

equation 2.59 as described in Section 2.2.1. This is a disadvantage since the quality of the

calibration depends then on the quality of the sliding short circuit.

In measurement, the sampled-line offers options not available with the standard six-port. As

was noted above, the frequency range of the sampled-line is expanded by adding samplers

to the line. There will be n-2 outputs from the sampled-line for a unit covering n octaves.

The outputs from the diodes which are not in the primary triple for calibration and

measurement can be used in a least-squares optimization to improve the estimate of the

reflection coefficient.

2.3.3 Comparison of the Sampled-Line and NBS Six-Ports

Figure 2.20 shows a comparison of the worst case errors for an NBS six port of the type

shown in Figure 2.12, and for a sampled-line network analyzer. This figure is based on a

numerical simulation in which both network analyzers were calibrated in the same way, with

a sliding short and short, open, and load impedance standards. It was assumed that power

detectors in both instruments were perfect square-law detectors with a resolution of 50,000

counts. RMS noise of two counts on each detector was assumed. The model of the

sampled-line included the effects of line loading by the samplers. Each sampler was

modeled as a shunt admittance of 0.1Y0 where Y0 is the characteristic admittance of the

sampled line. The model for the NBS analyzer assumed perfect couplers and perfectly

matched detectors.

2-52
DTR91B.AES/WP4

CO
r-n
Z

0J
E

I'--I

_.J

E
E
rg

CO

DTW-8944-91003

CD

C" _

'_ EL
I

I

-_ x II
(D ,._

>-

CL El U]
ECO __
r0Ci] 0 Dd
trlZ __

E_ -[] (D Ln
-[] C E
O r0 (I]

Un
-C] __ _ -,
, IE

LF) El U_
N
Z]n_

© r0 _-CD
E CZ OED
0 q] Z]

tn___ CD
s_ IF]

_- ID II
rO 3

D_+_ X
E a] rO
0 E-
(_] E

Figure 2.20

©
k._

Ln
E

CD

CO

LO

- C'J

¢,---I

N
-r-

U
E

D
EF

S._

Comparison of the sampled-line network analyzer with an NBS-type six-port
network analyzer. Ideal models are used for couplers in NBS circuit.
Sampled-line is optimized for 1-8 GHz operation and samplers look like
500 ohm resistors loading the line.

2-53

DTR91B.AFO/WP1

__ DTW-8944-91003

We see that whereas the NBS type six-port has a worst case error which is independent of

frequency, the sampled-line's error varies with frequency, reaching maxima at the band

edges when switching from one diode triple to another. For most of the range however, the

samp!ed-line is superior to the NBS network analyzer in measurement error.

Since the ultimate goal of this work is to operate at very low test signal powers, a

comparison of the two devices in terms of the ratio of power delivered to a detector diode to

the power delivered to the device under test. For this comparison it was necessary to make

an assumption about the matching networks used for the detector diodes in the NBS six-

port. We assumed ideal isolators were used, though in general some Iossy element, such as

an attenuator would need to be used to achieve the broadband match required here. The

diode impedance is typically a kilohm or so, shunted by a few tenths of a pF. For the

sampled-line, it was assumed that isolation resistors of value 10Z 0 were placed between the

diodes and the line. The same model for the detector diode was used for both.

The result is that the two network analyzers are within a dB of each other in this respect up

to the corner frequency of the sampled-line's sampling circuit. The roll-off is caused by the

sampling diode's capacitance, and since the diode sees a higher embedding impedance in

the sampled-line analyzer than in the NBS, its corner comes at a lower frequency. Thus, in

terms of the power delivered to the detectors, the two analyzers are comparable at low

frequencies, below about 2 GHz for the model assumed here. Above 2 GHz, the sampled-

line loses ground on the NBS-type at the rate of 6 dB/octave until the NBS hits its corner

frequency at perhaps 7 GHz. Above this corner frequency, the NBS analyzer has a steady

advantage of 8 or 9 dB.

Since diode matching networks in the NBS six-port would in general have losses, it is clear

that the the two types are not largely different in power delivered to the detectors. The small

size achievable with the sampled-line analyzer thus tips the balance in its favor for this

application.

In summary then, the sampled-line has better measurement accuracy over most of any given

range of frequencies than the NBS-type analyzer. It is comparable in power delivered to the

detector diodes for a given power available to the device under test. Its calibration options

are more limited than those of the NBS device, but the large number of detectors used offer

the potential of improved accuracy through use of the redundant information.

2-54
DTR91B.AEEVWP4

-- DTW-8944-91003

2.4 Construction of the Sampled-Line Module

The first step in construction of the microwave sampled-line module was the construction

and testing of two candidate sampler circuits using different fabrication techniques. The

relative merits of these two approaches were to be evaluated, and and one was to be

selected for use in construction of the final sampled-line modules.

Schematically, the two sampling circuits considered were the same. The sampler is shown

schematically in Figure 2.21. It consists of an isolation resitor and dc blocking capacitor

between the diode and the line, and an RC low-pass filter following the detector to isolate the

RF from the low-frequency lines. The detector used is a Hewlett-Packard HSCH-5336

beam-leaded Schottky diode. The difference in the two approaches was in the fabrication of

the isolation resistors used for the samplers. In one case a 500 Ohm microwave chip

resistor was affixed to the microstrip line using conducting epoxy. In the other, an Ohmega-

Ply substrate from Rogers, Inc. was used. The Ohmega-Ply material allows planar resistors

to be fabricated directly on the board through an etching procedure. It was thought that the

Ohmega-Ply material would give lower parasitic loading of the microstrip line than the chip

resistors.

Both circuits were built and their microwave scattering parameters were measured over the

0.5-10 GHz range. Over this range, parasitic loading effects for both samplers appear quite

small. Calculated scattering parameters from a model consisting of a pure resistance

shunting a transmission line agreed with the measured data fairly well. The parasitic shunt

capacitance introduced by either sampler appears to be in the tens of femtofarads.

1 pf

500fl

D

0

5.1 pf

Figure 2.21 Sampling circuit used in the sampled-line network analyzer.

2-55
DTRglB.AFO_/P1

DTW-8944-91003

The measured responsivities of the two samplers showed a marked difference in them,

however. The results are shown in Figure 2.22. The responsivity of the Ohmega-Ply

sampler falls off sharply above 6 GHz, while the chip resistor version performs satisfactorily

up to 10 GHz. It is thought that parasitic inductance in the Ohmega-Ply resistor is the cause

of this sharp fall. The resistive material on the substrate has a sheet resistivity of Ohms per

square. Thus, a 500 Ohm resistor must have an aspect ratio of 20 to 1. The resistor we

fabricated was 0.15 mm by 3 ram. Some parasitic inductance in such a long thin line would

be expected. A simulation in which the resistor was modeled as a Iossy transmission line

gave results in good agreement with the measured data.

Since the sampled-line analyzer to be built must perform up to 8 GHz, the chip resistor

sampler design appeared to be the one of choice. Tests in JPL's cryogenic dewars showed

that the chip resistor design could survive multiple cooling cycles to 4K without ill effects.

The chip resistor design was thus chosen for the sampled-line module.

The sampled-line module which is the primary component of the measurement system

consists of a microstrip line, connectorized on both ends, in a brass enclosure. Five resistive

samplers of the type described above are distributed along the line, spaced logarithmically to

give good measurement performance over the 1-8GHz range. Low frequency output signals

from the detectors leave the enclosure through a doubly shielded multi-coax connector. An

attenuator, fabricated in the microstrip using thick-film resistors, is placed between the

sampling diodes and one connector to prevent deep nulls on the sampled line. Further

details of the design, and results of various tests are presented in the following paragraphs.

Attenuator Design: As noted in previous sections, an attenuator must be placed between the

samplers on the line of the instrument, and the device under test. This attenuator prevents

deep standing wave nulls on the sampled-line, which degrade measurement accuracy. In the

past, an external coaxial attenuator was used, but due to size constraints on the current

application, it was deemed necessary to integrate the attenuator into the sampled-line

module itself.

Previous work has shown that the optimum attenuator value for use with the sampled line is

4.8 dB. We designed a simple T- attenuator of this value. The series arms of the attenuator

were 13.21 _ resistors, and the shunt leg was 88.04 _. We used a Rogers Ohmega-Ply

2-56
DTR91B.AES/WP4

DTW-8944-91003

4O
dB re] i

2O

V/W

Responsivlt_ of Sampler Circui_

With Chip Resislors
Hicroamp Bias, Compensated for SUltCh

Loss anO Lock-in Cal. Error

35

3O

25

20

O. 0.5 ! 5]0

frequencw, GHz

40

30

2O

I0

0

-]0

-20
O,

Figure 2.22

Responslvitw of Sampler Circuit

Wilh Ohmega-Piy Resislors

20 Microamp Bias
Corrected for PIN Switch Loss

dB re]]V/W

i ... "---_.. i

.................. ""-C:.::.............'(,

I I I I I I I I I I I I I I I

0.5 l 5 10

Measured responsivities for two sampler circuits. One was built with chip
resistors epoxied to the circuit board. The other used integrated resistors
fabricated on the board through use of the Rogers Ohmega-Ply substrate
material. Left-hand scale is in dB relative to 1 volt per watt travelling down
the sampled line. The measurement was made with a matched termination

on the microstrip line.

2-57

DTR91B.AFO/WP1

DTW-8944-91003

substrateto fabricate this attenuator. TheOhmega-Plysubstrateisacopper-clad

microwave substrate. Under the copper cladding is a layer which, when exposed and

chemically treated, becomes a 25 _/square resistive layer. A 50 _3microstrip line on our

substrates is 1.1 mm wide, so our series resistors became 0.6 x 1.1 mm bars, and the shunt

resistor was 0.25 mm wide and 0.9 mm long. A via hole through the board supplied a ground

connection for the shunt leg.

This attenuator configuration was arrived at after a couple of trials. We found that the shunt

resistor must be made as physically small as possible, to move parasitic transmission line

effects in the shunt resistor up beyond the frequency range of interest.

Figure 2.23 shows the performance of the microstrip attenuator. Over the 1-8 GHz frequency

range, the attenuation is flat to within +/- 0.5 dB, and the return loss is greater than 14 dB.

These specs are comparable to those of commercial drop-in chip attenuators, and are

adequate for our present purposes.

Sampled-Line Module Construction: The sampled-line module layout incorporated five

samplers of the type tested at low temperatures, and a microstrip attenuator. The samplers

were spaced in a log-periodic fashion to give good measurement accuracy over a 1-8 GHz

frequency range. The microstrip circuit was mounted with conducting epoxy in a machined

brass housing.

Sampled-Line Module Testing: Figure 2.24 shows IS111 and IS211 of the sampled-line

module. The transmission loss of about 7 dB is accounted for by the internal attenuator, and

the effects of the samplers. We calculate that microstrip loss in the module accounts for only

0.1 dB at the low end of the band and 0.6 dB at 10 GHz.

The sampled-line exhibits a return loss of about 15 dB or more over the 1-8 GHz band,

which indicates that the resistive samplers are not badly loading the line.

Figure 2.25 shows the responsivities of the five detectors in the sampled-line module. The

responses of the detectors are reasonably well matched. Some variance is inevitable since

upstream samplers slightly reduce the power available to their downstream neighbors. The

responsivities seen here agree well with those observed for a single sampler. We have not

found a conclusive explanation for the peaking of the responsivity at 10 GHz, but circuit

modelling work indicates that a resonance between the via hole inductance and the Schottky

diode capacitance may be the cause.

2-58
OTR91B.AEStWP4

DTW-8944-91003

0

-2

-4

-6

-8

Microstrip Attenuator
Scattering Parameters

$211, dB ISll:, d8

........................i..................................i--:::_:--:'-,-:-t

.......,........._..-:::--i---::::.........-,....;....:-......i -:

'i........::,................::._,:__i....... /...........

2 4 6 8

0

-lO

-2O

-3O

:$21:

-4@ :SII:

0

Frequencs, GHz

Figure 2.23 The microstrip attenuator integrated into the sampled-line module exhibits
attenation flatness of -+0.5 dB over the 1-8 GHz band.

2-59

DTR91B.AFO/WP1

DTW-8944-91003

-4

-6

-8

-I0

$21 ,dB

Sampled-Line Module

Scattering Parameters

'SII:,dBi

,

,

f
l

, "-", i " ', , ', ',,'
........L _....... .., ' ' - ,_ , '
,, y_, , -- ,...... "_...... _--'(::---_'-;" ,-'1 •

'¢, , " , ,

• ' i I i L I _ • L _ A '. , J a

2 4 6 8 I0

0

-I0

-20

-_0

'$21'i i

-40iSll;

Frequencw, GHz

Figure 2.24 S-parameters of the sampled-line network analyzer module.

2-60

[3TR91 B.AFO/WP1

DTW-8944-91003

5O

Responsivities of Betectors in

Firs_ Sampled-Line MoOule

I0 Microamp Bias

dB tel I V/W

45

40

35

SO

25

20

0. i

I

I I I I I I J

0.5 l

I I I I I I I

5

.......sampler 5

............sampler 4

.......sampler 3

..........sampler 2

--sampler 1

0

_requencw, GHz

Figure 2.25 Detector responsivities of the sampled-line module.

2-61

DTR91B.AFO/WP1

_ DTW-8944-91003

The sampled-line module was connected to the breadboards of our post-detection signal

processing circuitry. With a 300 nW test signal and a 0.1 sec integration time, we observe

anSNR of about 45dBonthe final output of our detection circuitry. With al0sec

integration, the test signal level which would drop the output of this system to the noise floor

is about 170 pW.

2.5 Calibration and Measurement Tests with the Sampled-Line Module

The post-detection electronics described in Sections 3 and 4 below were combined with the

network analyzer module, and calibration and measurement tests were performed on the

resulting network analyzer system at room temperature, 77K, and 4K.

Figure 2.26 shows the results of a typical room temperature test. The network analyzer was

calibrated, and the reflection coefficient of a short circuit at the end of a length of precision

air coaxial line was measured. This test was performed with a relatively high test signal

level. The programmable amplifiers in the post-detection electronics were all set to their

minimum gain values, and the test signal applied to the load was a few microwatts.

In the figure, the sampled-line measurement is compared to a measurement of the same

device with our computer error-corrected HP 8410 network analyzer. This instrument has an

error vector of magnitude 0.01 over this frequency range. We thus estimate that on this

measurement, the sampled-line network analyzer had an error of 0.02 for f < 4 GHz, and an

error of 0.04 forf>4GHz. We believe this performance can be improved by better

characterizing the calibration standards we are now using at the higher frequencies.

Cryogenic tests of the network analyzer were performed at the Jet Propulsion Laboratory

using immersion dewars. The procedure was to connect two stainless steel semi-rigid

coaxial cables to the network analyzer module, one to each end. These cables were

strapped together with the low-frequency output cables from the analyzer to form a boom

which could support the analyzer module's weight as it was lowered into the cryogenic bath.

With the network analyzer sitting in the bath, the test signal could be applied to input cable,

and calibration standards and the device to be measured could be connected to the other

cable. The network analyzer was thus calibrated to a reference plane in the "warm" while

sitting in the "cold." With this technique, we could perform a variety of tests, make changes

to signal level, etc. without waiting through warm-up/cool-down cycles.

2-62
DTR91B.AE,SP_ P4

DTW-8944-91003

CO
EL
-F

E C
FU .,--,

LO---_

O,J
a

z i i I

,,r--i

I I

II,_ .-t

i

h . ,I I I

t-I

I I I

0"1

d

CO

LID

,q,--

I OJ
CO

d

N
q.-
(_3

U

ET

LI_

Q

E

E
o

o

o

o

o,I

o,I

IJ_

2-63

DTR91B.AE 5,,WP4

DTW-8944-91003

It was found that some changes to our original diode biasing circuitry were required for

cryogenic operation. As described below, our original circuitry supported two discrete diode

bias currents. The idea was to use one for room temperature measurements, and the other

for cryogenic measurements, and to be able to switch between them under software control.

Early tests on a single diode sampler indicated that this should work satisfactorily. In our first

cryogenic test of the completed sampled-line module, however, it became apparent that with

cooling, diode parameters could be quite different from device to device. We thus built an

external bias box with independently adjustable bias currents for each diode in the sampled-

line module.

The table below shows the results of a measurement of the delayed short circuit with the

network analyzer cooled to 77K. The test signal power is a few tens of nanowatts. The test

is over the 2-4GHz range, and with the exception of one bad point, the analyzer shows good

accuracy. The "Ideal" column shows the reflection coefficient expected for a Iossless

shorted delay line of the length used. The fact that the phase error increases approximately

linearly with frequency may indicate a frequency error in the signal generator.

Measured Ideal

Frequency Mag Angle Mag Angle

2.00000 0.99203 57.0 1.0 60.0
2.20000 0.99266 9.5 1.0 12.0
2.40000 0.98820 -40.2 1.0 -36.0
2.60000 0.96887 -88.5 1.0 -84.0
2.80000 0.97855 -138.0 1.0 -132.0
3.00000 0.98442 174.4 1.0 180.0
3.20000 0.98001 125.1 1.0 132.0
3.40000 0.99239 76.9 1.0 84.0
3.60000 0.99232 27.4 1.0 36.0
3.80000 0.98641 -21.8 1.0 -12.0
4.00000 1.29512 -70.0 1.0 -60.0

A bias current of about 10 microamps per diode works well at both 77K and room

temperature. When the analyzer was immersed in liquid helium, however, the detectors

essentially ceased functioning. It was found that increasing the bias current to 100

microamps brought the detectors back, and allowed measurements to be made at 4K. The

theory does not indicate that these detector should work at all at 4K, so our conjecture is that

the increased bias current causes internal heating of the device so that some part of the

active region gets warm enough to operate.

2-64
OTR91B.AE5/WP4

__ DTW-8944-91003

The disadvantage of this high bias current is that it increases the diode's diffusion

capacitance, and thus reduces the high frequency response of the network analyzer. In our

tests to date we have not been able to successfully calibrate the network analyzer at

frequencies above 3GHz. T.h.9 table below shows results for a 4K measurement from 2-

3GHz. The bias current was 100 microamps on each diode, and the test signal power was a

few tens of nanowatts.

Measured Ideal

Frequency Mag Angle Mag Angle

2.00000 0.97244 58.6 1.0 60.0
2.20000 0.88273 7.8 1.0 12.0
2.40000 1.04530 -39.1 1.0 -36.0
2.60000 1.11285 -87.2 1.0 -84.0
2.80000 1.05116 -140.6 1.0 -132.01
3.00000 0.94307 172.8 1.0 180.0

2-65
DTR91B.AES,'WP4

- DTW-8944-91003

3.0 POST-DETECTION ELECTRONICS DESIGN AND CONSTRUCTION

Due to the extremely low-level signals to be detected as outputs from the sampled-line

module, the network analyzer system requires high-perfcrmance post-detection amplifiers,

and a synchronous detection scheme for signal recovery. An analog-to-digital converter

system is also required to enter the analog outputs from the detectors into the computer for

processing.

After some experimentation, the architecture shown in Figure 3.1 was chosen for the

instrumentation electronics. It provides good performance and flexibility of configuration, to

allow measurements in several regimes of signal power level.

The system essentially consists of a multi-channel PC-based lock-in amplifier. The

synchronizer output signal is applied to a PIN-diode modulator, giving a square-wave

modulated microwave test signal. The outputs from the analyzer's detectors are thus

similarly modulated.

This square-wave modulated detector output is amplified through a series of AC-coupled

amplifiers and applied to a balanced demodulator. The balanced demodulator's LO input is

a square wave of the same frequency and phase as the detected signal. Thus, only the

detector output gives rise to a DC component in the output of the demodulator. The cutoff

frequency of the low-pass filter following the demodulator can be adjusted to give very low

overall system noise bandwidths, and thus high sensitivity.

The flexibility of the system lies in the programmable gain amplifiers and the programmable

cutoff frequency filter. For measurements with very low signal powers, the system gain can

be maximized and the LPF cutoff minimized to give the best sensitivity at the expense of

measurement speed. When a higher test signal power may be used, turning down the gain

and opening up the LPF gives a faster measurement system.

The outputs from the low-pass filters go through another gain stage, and then are

multiplexed intoa16-bitA/Dconverter. The A/D converter exchanges data with the

computer (an IBM AT) over a simple digital interface based on an Intel 8255 programmable

peripheral interface.

3-1
DTR91B.AE5/WP4

DTW-8944-91003

We designed the post-detection electronics package around VMEbus hardware. The system

was designed to be expandable, with one central MUX, A/D, and computer interface, and

with up to 16 channels of lock-in amplification installable as plug-in cards. The lock-in

amplifier plug-in cards each contained everything in the signal processing chain of Figure 3.1

from the low-noise amplifier at far left to the programmable integrator.

Each lock-in amplifier is placed on a single 3U by 220 VMEbus size circuit card. The

computer interface and power supply are on 6U by 220 VMEbus size cards. Interface to the

computer is through a 24-bit parallel general purpose interface card. The entire system

resides in a 12"x14"x18" cabinet which can be adapted for mounting in a standard 19" rack.

Due to the low-level signals to be used in this work, each channel of the amplifier must have

high gain and low noise. Referring again to Figure 3.1, we will step through the functional

blocks of a channel of the multi-channel amplifier and discuss its features and performance.

The low-noise ac-coupled first stage of each amplifier determines the amplifier's noise

performance. The noise contributions of subsequent stages are effectively divided by the

gain of the first stage. Our first stage is built with three operational amplifiers. The first in

line is a Linear Technologies LT1007 low-noise precision op-amp. The gain of the first stage

is 86 dB. Its noise performance, measured at a frequency of 1 kHz, is shown in Figure 3.2.

For low source impedances, the amplifier has an equivalent input voltage noise density of 6

nV/_I-R'_. At 2 k_, typical of the source impedances the amplifiers see looking into the

network analyzer module, the noise is approximately 7.5 nV/_"_'. At higher source

impedances, the noise increases sharply. This is due to increased thermal (Johnson) noise

from the source resistor itself, and due to op amp noise currents flowing in the source

resistor.

The solid line in Figure 3.2 shows the calculated noise performance for the amplifier. The

calculations used the manufacturer's worst case numbers for equivalent input voltage and

current noise, and included the Johnson noise of all the resistors in the first stage. For low

source impedances, our measured performance is slightly better than that predicted by the

calculation. In this regime the noise performance is determined by the op amp's equivalent

input noise voltage (shot noise). For high source impedances, our measured noise is slightly

higher than the predicted value. This would suggest that the LT1007's input current noise is

higher than that quoted by the manufacturer. We have identified some circuit configuration

and resistor value changes which may further reduce the equivalent input noise for source

impedances in the 2 k£ range. These changes are currently being implemented.

3-2

DTR91B.AFO/WP1

-- DTW-8944-91003

_',==o

oi

!
,2

o

Figure 3.1 Instrumentation electronics for the sampled-line network analyzer consist of
a multi-channel PC-based lock-in amplifier.

3-3

DTRg1B.AFO/WP1

-- DTW-8944-91003

L_ ,-_

D D
U1 U

Z

D,J

ED

___ F-

0 C

O_ 0
.____

[n ._ CD

0 mCD

Z D II
._ D]_--

D._OK

EL C -[]
C 0 C

LJ

C 07
C

_] __
>

D >
O-C

Ld _-_

C

%
_\

\

>
C If,Jl , f ,

0 ED
CD LO

Illl I I I

CD CD

0
ED

CD
CD

CD

CD

!ff L,,fl I

E
c-

O

o

2
o

I

t-
O

°--

0

o
e_

t-

o

r-
¢-

¢-
o

I

o
oI

o

O

r-

E

o

Q

O
Z

°I

3-4
DT R91B.AESvWP4

DTW-8944-91003

The next block in the amplifier chain is the programmable-gain ac amplifier. This amplifier is

built around a general purpose Precision Monolithics OP-270 op amp and its voltage gain is

selectable with values of 1, 10, or 100.

The balanced demodulator isasinglelC. We use the Analog DevicesAD-630. The

programmable integrator and programmable dc amplifier are both built around Precision

Monolithics ultra-low offset OP-177 op amps. The integrator, a two-pole low-pass filter, can

be set for integration times of 0.01,0.1, or 1 sec. The dc amplifier can be set for voltage

gains of 1,2, 5, or 10. Thus the overall gain of the system can be programmed between 86

and 146 dB in approximately 6 dB steps.

Precision Monolithics SMP-10s are used for the sample-and-hold amplifiers, and the analog

multiplexers are Analog Devices ADG-528s. A 16-bit A/D converter is used. The converter is

a hybrid module, the Burr-BrownADC71KG. The programmable amplifiers useTTL-

compatible CMOS analog switches, and programming is through a set of general purpose

latches and registers on each amplifier board. The computer interface is through a 24-bit

parallel interface card (Keithley MetraByte PIO-12) which plugs into the IBM AT backplane.

The interface is divided into three 8-bit buses for address, data, and control.

Appendix A gives detailed schematics of the signal processing system. Sheet 1 shows the

circuitry on each plug-in amplifier card. U1, U2 and U3A make up the low-noise amplifier.

U3B and the associated CMOS switches make up the programmable gain amplifier. The

balanced demodulator is implemented by U5, and its output goes to a programmable

integrator and programmable gain DC-coupled amplifier (U6 and U7 respectively). The other

ICs on the board are digital registers for storing control bits.

Sheet 2 of Appendix A shows the sample-and-hold amplifier bank. All input signals are

simultaneously sampled to avoid timing errors in sampling. The outputs of the S/H amplifiers

go to analog multiplexers U18 and U19. The outputs of the MUXs are buffered and passed

on to the 16-bit A/D converters of sheet 3. Sheet 3 also contains address decoding logic

and data registers for the A/D outputs. Sheet 4 shows the system power supply.

OT R91B.AE 5,'WP4

3-5

DTW-8944-91003

4.0 SYNCHRONIZATION CIRCUITRY

The synchronizer, shown as a block in Figure 3.1, provides signals which modulate the

microwave test signal, and synchronously demodulate it to yield the output signals. In

principal, the frequency of these sync signals could be anything, so long as it lies within the

pass bands of the ac amplifier chain. We have chosen, however, to use a phase-locked

multiplier to generate a sync signal which is a harmonic of the 60 Hz line frequency (960 Hz).

Choosing the sync frequency in this way gives the system the maximum rejection of 60 Hz

pickup.

Sheet 5 of Appendix A shows the synchronization circuitry. A 60-Hz signal from a low-

voltage transformer winding is applied to comparator U39. A CMOS digital phase detector is

used. This type of detector also acts as frequency discriminator when the VCO and input

frequencies are vastly different, thus assuring pull-in independent of initial conditions. The

loop filter U43 feeds the VCO. The VCO's output is divided down by a factor of 16 by U45

and fed back to the phase detector.

4-1
DTR91B.AES'WP4

_ DTW-8944-91003

5.0 SYSTEM SIGNAL GENERATOR

The signal generator for use with the sampled-line network analyzer must cover the

frequency range of 1 to 8 GHz. One must be able to chop the output of the generator with

an external synchronization signal. A leveling loop is unnecessary in the generator as the

analyzer forms its own loop by reading the reflectometers' diode outputs and feeding back

through the computer.

The signal generator must also have a fairly pure signal. This is due to the fact that the

network analyzer, using a video detection scheme as it does, cannot discriminate between a

signal and its harmonics. In any measurement, the harmonics set up standing wave

patterns on the line just as the fundamental does and the detectors read the sum of these.

This gives a source of error which cannot be calibrated or averaged out with existing

algorithms.

To assure that the harmonics cannot be a problem in a measurement, the harmonics are

required to be below the fundamental by more than the dynamic range of the A/D converter.

Then errors due to harmonics will be less than 1 LSB of the converter. Thus, the harmonics

must be at the -36 dBc level for the 12-bit A/D and at the -48 dBc level for the 16-bit. The

generator was designed for the -48 dBc level.

Figure 5.1 shows a block diagram of the signal generator to be delivered. The 1-8 GHz

frequency range is covered by an Avantek HTO-1000 hyperabrupt varactor-tuned oscillator

over 1-2 GHz and an Avantek AV-7028 YIG-tuned oscillator over the 2-8 GHz range. A

coaxial switch selects between the two oscillators and passes the output to an Avantek AFP-

21851 YIG-tuned filter. The pad between the oscillators and the filter is to prevent the

oscillators from exceeding the power-handling capability of the filter. The pad also prevents

significant frequency pulling of the VCO by changes in load impedance.

The center frequencies of both oscillators and the filter are digitally controlled by the

system's control. An automatic alignment routine sweeps through the signal generator's

frequency range, finds the optimum filter setting for a given oscillator setting, and stores the

result in a disk file which is used by other measurement and control programs.

5-1
DTRglS.AES/WP4

-- DTW-8944-91003

HTO-1000

VCO

1-2 GHz

AV-7028

YTO

2-8 GHz

6dB
AFP21851

YTF

1-18 GHz

r

Figure 5.1 Block diagram of the high-purity 2-8 GHz signal generator.

DTR91B.AEStWP4

5-2

DTW-8944-91003

A series of tests were performed on the signal generator to be used with the network

analyzer. The results are shown in Figures 5.2-4. Figures 5.2 and 5.3 show spectra of the

generator's output signal. The generator uses a hyperabrupt varactor-tuned oscillator to

cover the 1-2 GHz range, and a YIG-tuned oscillator for 2-8 GHz. Figure 5.2 showsa

spectrum of the varactor-tuned oscillator's output at 1.5 GHz and Figure 5.3 shows the YIG

oscillator's output at 6 GHz. In both cases, a slow sweep was used on the spectrum

analyzer so the extent of frequency jitter could be observed.

During both measurements, the controlling computer was continuously rewriting the same

frequency commands to the signal generator. Thus, the digital interface was active, and the

D/A converters were continuously updating the control voltage or current to the oscillator.

We consider this our worst case condition from a noise and frequency jitter standpoint.

Under these conditions the VCO exhibits about 250 kHz peak-to-peak FM noise, and the

YTO FM noise is about 200 kHz peak-to-peak. For the VCO, the peak-to-peak FM noise

level corresponds to approximately 1 LSB of the D/A converter driving it. For the YIG, the

noise is less than 1 LSB. This level of FM noise should be acceptable for the network

analyzer. 250 kHz peak-to-peak of FM noise would correspond to a ±0.15" phase error in

measuring transmission through a 1 m delay line.

The output signal was also checked for harmonics and spurious signals. A search with the

spectrum analyzer found no spurious or harmonic signals that were larger than -50 dBc

Figure 5.4 shows the output power of the signal generator as a function of output frequency.

The discontinuity at 2 GHz is due to the different power output levels of the VCO and YTO.

Sheets 6 and 7 of Appendix A show the digital interface circuitry and analog driver circuitry

used in the signal generator.

5-3
DTR91B.AES/WP4

DTW-8944-91003

SPAN500 kHz/ RESBW30 kHz

10 dB/ AfTEN 30 dB SWP] sec/

_ =^i.

VF OFF

I

'_i..,= . . |j

Figure 5.2 The signal generator output at 1.5 GHz shows typical performance of the
hyperabrupt varactor-tuned oscillator.

5-4
__ DTR91B.AF0/WP1

- DTW-8944-91003

CTR 6.0048 GHz SPAN500 kHz/ RESBN 30 kHz

REF 20 dBm 10 dB/ ATTEN30 dB SWP1 sec/

"-I

VF OFF

Figure 5.3 The signal generator output at 6 GHz shows typical performance of the YIG-
tuned oscillator.

5-5
DTR91B.AFO/WP1

- DTW-8944-91003

dBm
I0

6

4

2

0 i i , I , , i I , L , I I i , I a , , I , , = I I , i

1 2 3 4 5 6 7 8

Frequencw_ GHz

Figure 5.4 Power output of the signal generator was measured using an HP 432A power
meter with a HP 478A thermistor mount.

DTR91B.AFO/WP1

5-6

__ DTW-8944-91003

6.0 SYSTEM PHASE SHIFTER

As indicated in Section 2.2, a phase shifter is required for transmission measurements using

two six-port network analyzers. Due to the requirements of high repeatability for this

instrumentation application, our analyses indicate that a phase shifter using precision

mechanical switches and low-loss coaxial delay lines would be required.

A standard digital phase shifter configuration, as shown Figure 6.1, is recommended. To

assure well-distributed phases over a three-octave bandwidth a fairly high-resolution phase

shifter, perhaps one with six bits would be required. Since the main emphasis in this work

has been to get the required performance in reflectometer mode to measure SIS

impedances, the phase shifter has not been implemented as part of the deliverable.

6-1
DTRglB.AE5/WP4

-- DTW-8944-91003

41o

21o

Io

Figure 6.1 A digital phase shifter.

6-2
DTR918.AES/WP4

-- DTW-8944-91003

7.0 CONCLUSION

A sampled-line network analyzer which shows promise for characterization of SIS mixers has

been built and delivered to workers at NASA/JPL. It is hoped that this urfi_ will enhance that

group's capabilities and allow them to make measurements not previously possible.

7-1
DTR91B.AE5/WP5

__ DTW-8944-91003

REFERENCES

[1] R.D. Middlebrook. EE 114, Electronic Circuit Design, Course Notes, California Institute

of Technology, 1984-85 academic year.

[2] A.A.M. Saleh. "Explicit formulas for error correction in microwave measuring sets with

switching-dependent port mismatches," IEEE Trans. lnstrum. Meas., vol.IM-28, no.l,

Mar. 1979.

[3] G.F. Engen. "Calibration of an arbitrary six-port junction for measurement of active and

passive circuit parameters," IEEE Trans. Inst. Meas., vol.IM-22, no.4, pp.295-299, Dec.

1973.

[4] G.F. Engen. "The six-port reflectometer: An alternative network analyzer," in 1977 IEEE

Mtt-S Int. Microwave Syrup. Dig., June 1977, pp.44-45, 53-55.

[5] G.F. Engen. "Calibrating the six-port reflectometer by means of sliding terminations,"

IEEE Trans. Microwave Theory Tech., voI.MTT-26, no.12, pp.951-957, Dec. 1978.

[6] CRC Standard Math Tables, Boca Raton, FL: CRC Press, Inc.

[7] G.F. Engen. "An improved circuit for implementing the six-port technique of microwave

measurements," IEEE Trans. Microwave Theory Tech., voI.MTT-25, no.12, pp.1080-

1083, Dec. 1977.

[8] G.F. Engen and C.A. Hoer. "'Thru-reflect-line': An improved technique for calibrating the

dual six-port automatic network analyzer," IEEE Trans. Microwave Theory Tech.,

voI.MTT-27, no.12, pp.987-993, Dec. 1979.

[9] C.A. Hoer. "A network analyzer incorporating two six-port reflectometers," IEEE Trans.

Microwave Theory Tech., voI.MTT-25, no.12, pp.1070-1074, Dec. 1977.

R-1

OTRglB.AES/WP4

Dynamics Technology, Inc.

APPENDIX A

DTW-8944-91003

5
FOLDOUT Fi_AME /.

6 4

A

,,_.) WR

D

_ ADR4

_-I-w

m m L'rl
mD

_ml ¢4¢

m m _

74N¢02

7_2

74_.01

n

ORiGi_L P_CE IS

OF POOR QIJ_LITY

'1 FOLDOUT FI,.'_..'\M2._.
1

b

t

q£m,-lul lllm

, i

| m

m

m .imsu

_ Lm

m
>m

,_--n

2:
,l$-lm

SYNC _..

T.- T,- T-- T'- __L -

"'=-t=i.l.i.io, i.lo, i.,l.,i_i.i=+
T" T"T"T"T"T"T"T"T"T.... T"

_.:: T"T"T"T"T"T"T"T'T"T"T" T"__:._

OF PO0_ QIJ._LJ2T_"

DYNAMICS TECHNOLOGY. INC

!ram= =_'=, MIOO AMPLIFIER PCB ASSEMBLY

i n,_ _ I.,_, MIOOOA-I • A

C

A

5
FOLDCUT FL_t_k_i_-_/

6

,-,>

d=-I_

,-,,>

=,-.=_

,,-.>

.,-.>

,-,,>

,=-jt_)

,-,>

• U= 7 U--___

* u= I

-- i/,4 r,_ ea

-- l,,I¢ CAll cT

z _ T

U170 L___._,
7¢HC04 1

OF PO0_.:_ QU._LjTY

m_lkl ¢lm U__[- ._

!,

/

U171i

74XC04

U17A

741_C04

GIIIP

r

3] 2

i i

_aIkT|

I

, s; Ao _ •

A2 •

M_ ..L

_m

_m

m(D U_-17

-J3

2

i. I.i.i.l.i.i.,i.i.i.i.i°.Li.I.i.i.,i.i.i.l.i.t.i_, _<'_

t2t2t2t2t2t2t212t2t2t2ti I2I£.t2t21.t2tit2t£,ti.t£.t2i2
TT'T"T"T"T"T"T"T'T'T"T'T'T'T'T"T"T'T'T'T'T'T'T" _
I_i_i_ o_.

rm_

Z - { sill: { 8mllulm in ii_.1
i Ii,li_: ar

j 1
_I I_COm

LT_ I E_ NO: _pmmvt s. bol't¢:

i,

_D

ADR7A _ __=
ADR6A _ ..,.,_

7,_.$4, ADR5A %__=

ADRSB _.,___,

in?

i Olin ,

el Ill

¢_Lt4 _II •
U

74HC571

L;2B

74HC$7_

U29

74M¢573

U_

74NCJ ;',1

% ml

\ I

\If

m7

-el

-Is

74MC02 ?_WC02

A

mX_ _ INl" AKN _..

?&O,lt;02

ma,,_.:

O_ ,:._<.:O.RQU,_.LITY

F--

C

FOLDOUT FRA_E /,
6

L

5
i

OF PO0_ QUf, L!TY

•='#2 CB7

o_,,> ce6

i

R_-/WR_.,,.
7,.,¢==

I

U3M

E

I

M

Ul|

zl J-_Am m_

t

-j
_rN

zl J-__m Om
, ¢; ',_." '_FI_III'J"_

W

I_l

Dynamics Technology, Inc.

DTW-8944-91003

APPENDIX B

Sampled-Line Network Analyzer

Installation and Operating Manual

-- DTW-8944-91003

Table of Contents

1. Getting Started
Hardware Installation .. B1-1
Software Installation ... B1-2

Operation ... B1-5

2. Hardware

Interface Logic .. B1-5

3. Software

Program Description .. B1-7
Program Listing ... B1-8

-- DTW-8944-91003

1. Getting Started

HardwareInstallation

Thesampled-line nutwork analyzer consists of a microwave sampling module, a post-
detection electronics unit (PDEU), and a microwave signal generator. It is designed to work
with an IBM PC-AT or clone. Installation is accomplished by interconnecting the above
systems and interfacing them to the PC.

Interface between the PC and the network analyzer system is through two plug-in cards in
the PC backplane. One board is a Data Translation DT-2801 series board. Any member of
the series is acceptable: the interface uses only the 16-bit parallel digital I/O feature, which

is common to all boards in the series. The other interface board is a Metrabyte PIO-12 24-bit
parallel interface. The DT-2801 controls the system signal generator, while the PIO-12
interfaces with the post-detection electronics.

To install the network analyzer, first install a DT-2801 series board into the PC. The settings
of jumpers W3-W16 and W25-W30 will not affect the operation of the signal generator.
These jumpers are concerned with the A/D and D/A conversion functions and DMA channel

selection. The signal generator uses none of these functions. The jumpers which should be
checked are Wl, W2, and W17-W24. These jumpers set the port addresses of the DT-2801
registers. The signal generator software expects to find the DT-2801 data and command

registers at hex addresses 2EC and 2ED respectively. These are the factory default
settings.

Next, install the PIO-12 board. Its base address should be set to hex 200 and all interrupts
should be disabled. If, due to hardware conflicts, the port address above cannot be used,
the definitions contained in monitor.h, ¢alib.l_nd measure.hmust be modified to reflect the
port addresses actually used, and the programs must be recompiled.

Once the interface boards are installed, the following cabling must be completed. One
ribbon cable must be connected between the signal generator and the DT-2801 board.
Another connects the PIO-12 board with the post-detection electronics unit (PDEU). These
two cables have different connector types to prevent confusion.

To provide synchronization, a BNC cable must be connected between the PDEU's sync

output and the RF blanking input of the signal generator. When looking at the signal
generator from the back, the RF blanking input is the rightmost BNC connector. The

sampled-line module must now be cabled to the system. Included with the system are two
cable bundles which each have a multi-coax connector on one end and five BNC males on

the other. Plug one multi-coax connector into the sampled-line module and the other into the
top multi-coax connector on the back of the PDEU. Then connect the BNCs to the bias box.
NOTE: as the cables are currently labeled, there is a reversal on the two sides of the bias

box. Connect cables on one side of the box in a 1-2-3-4-5 sequence, and those on the other
side in a 5-4-3-2-1 sequence.

B1-1
M :DTR91B.AES/WP4

_ DTW-8944-91003

The only remaining cable is the rf cable between the signal generator and the sampled-line
module. In connecting this cable be sure to include a coaxial shield DC block. This
interrupts low-frequency ground return currents which can cause large offsets in the
sampled-line's detector outputs. In general, attenuators will also be needed between the
signal generator and the sampling module to _chieve a suitable microwave signal level.

Software Installation

The executable files monltor.exe, calib.exeend measure.execonstitute all the software
needed to run the network analyzer. Copy them to the directory of choice, and software
installation is complete.

Operation

The network analyzer is operated by running the three programs, monltor.exe, callb.exei_nd
measure.exe,in sequence. The program monitods used to set bias and power levels and
check overall system integrity. The program calib.exe performs a system calibration and
saves the results to a file. The program measure.exe reads the calibration file, makes a
measurement and stores the result in a file.

To put the system in monitor mode, turn on the signal generator, PDEU, and computer,
change to the appropriate directory, and type "monltor.'l'he system should now be up and
running. The screen should clear and a block of text similar to that shown in Figure 1 should
appear left justified and centered top-to-bottom on the screen.

Frequency: 1.000 GHz
Freq. Inc.: 0.100 GHz
Step: U/D

Bias Curr.: 0.4 j_,
Int. Time: 10 ms

Range: 1 mV

X.XXXX X.XXXX X.XXXX X.XXXX X.XXXX

Figure 1. When monitois operating, you should see the above on the PC display. The numbers
denoted by the X.XXXX's are the values of the outputs of each of the detectors in the sampled-line
module. They are updated in real time.

The system is operated by stepping around the various fields of these displays, and
changing them from the keyboard. Changes made on the screen are continuously written
out to the hardware.

B1-2
M.-DTR91B.AE5/WP4

- DTW-8944-91003

The desired frequency and frequency step size are set by moving the cursor to the
appropriate numeric field with the up and down arrow keys and entering the desired values.
The program will accept arrow keys, numbers, the decimal point, INS, DEL, and
BACKSPACE, so the displayed value may be edited to whatever value is desired. Whatever

changes are made on the display will immediately be written out to the hardware, provided
the quantities displayed are within the capabilities of the signal generator.

There is another feature of the frequency control function which is not evident from the
display. It is "filter tweaking." For maximum output, the center frequency of the signal
generator's tracking filter must be precisely aligned with the oscillator output frequency. This
alignment is normally performed by interpolating between values in a look-up table which is
maintained in a file accompanying the control program. The table was derived by aligning
the system at evenly spaced points in the signal generator's frequency range, and noting the
signal generator register values at these points.

The filter adjustment function allows the output power of the signal generator at a given
frequency to be peaked by finely adjusting the filter's output passband to center on the
oscillator output frequency. The F1 key moves the filter passband down in frequency. Each
key press moves the filter by one LSB of its control word.

The other fields on the control screen provide control of the PDEU's gain, integration time,
and bias supply. These fields are modified by positioning the cursor to the desired field and
using PgUp and PgDnto step through the allowed values. Actually, the bias current function
has been replaced by the external bias box which allows continuous adjustment of the bias
current instead of the two values originally designed in. Thus, changing the bias current on
the screen has no effect on the actual bias current applied.

The last elements in the display of the monltorscreen are the numbers across the bottom.
These are the actual voltage outputs, in microvolts, of the five detectors in the network
analyzer. They are read and updated approximately once each integration time. The user
may notice these numbers undergoing a large transient whenever system gain or integration
time are changed. This is a normal response to the change in system configuration, and the
values should return to stable levels within an integration time or so.

An additional feature of the monltorprogram is the ability to write the detector outputs
displayed on the screen to a file. At start-up, the monitorprogram opens an ASCII file called
values.dat. Anytime during the program's operation, the user may press the '_v" key and the
current frequency and the five output values will be written to the file.

With the monitor program running, the user should verify that all detectors in the system are
responding, and that their outputs are not saturating the PDEU. A good test is to place a
sliding short on the device's test port, slide it repeatedly from end to end, and verify that all
detector outputs move in response. The PDEU range and integration time, and the diode

bias, should then be adjusted so that the detector outputs over the frequency range of

B1-3
M :OTR91B.AE5/WP4

-- DTW-8944-91003

interest use most of the output range but never saturate the PDEU. If adjustments of the
above three quantities do not yield an output in range, the attenuators in the microwave line
feeding the sampled-line module must be adjusted.

Note the woper range once it has been found. The program calib will prompt for it.

To exit from the monltorprogram at any point, use the "ESCAPE" key.

To start the calibration procedure, execute calib.exe. This program will prompt for PDEU
gain and frequency range. It will use the maximum integration time, 1 second, to maximize

accuracy during calibration. The program callb.exesteps through the calibration procedure,
prompting the user at each step for whatever calibration standard is required. On ending, it
writes the raw calibration data to a file specified by the user.

The program measure.exereads the calibration file and, using the frequency range, settings,
and calibration data therein, measures the reflection coefficient of the device under test over

one frequency sweep. The reflection coefficient data is stored to an ASCII file specified by
the user. An arbitrary number of measurements can be made using the same calibration file.
All the algorithms for calibration and measurement are contained in measure.exe. The

program ¢alib.exejust takes data and stores it in a file. Thus, if the user wishes to modify
models of the standards or calibration algorithms, he should edit measure.c.

B1-4
M :DTR91B.AES/WP4

DTW-8944-91003

2. Hardware

The hardware of the sampled-line network analyzer is described in detail in the text of the
final report. Here we present an overview of the digital interface between the PC, the signal
generator, and the PDEU. Understat_ding of these interfaces will aid the user who wishes to

make any changes to the control programs above.

Interface Logic

Two interfaces are used in the operation of the network analyzer. The first is that between

the PC and the signal generator, and the second is that between the PC and the PDEU.

The YIG-tuned oscillator, voltage-controlled oscillator and YIG-tuned filter in the signal
generator are each equipped with digital drivers which each accept a 12-bit input value.
Information on the positions of the SPDT microwave relay requires another bit. The control
information for all these devices is stored in six latched internal registers in the signal

generator.

The functions of these six internal registers of the signal generator are given below.

Register 0: b7..b0
Register 1: b7..b0
Register 2: b3..b0

b7..b4

Register 3: bl

Register 4: b7..b0
Register 5: b7..b4

YTF least significant byte.
YT0 least significant byte.
YTF upper nibble.
YT0 upper nibble.
VCO/YTO switch. "1" selects YTO;
"0" selects VCO.

VCO kease significant byte.
VCO upper nibble.

Accessing the above registers from the two 8-bit ports of the DT-2801 series board is
achieved as follows. DT-2801 digital ports 0 and 1 are set to output mode. Both ports drive
active low lines, and hence one's complement must be performed prior to writing the ports.
All references here are made to the active true signals, with this inversion being kept in
mind.

DT-2801 port 0 is the data port. Data are set up 100 _s before clocking and held 100 _s
after clocking. DT-2801 port 1 controls the interface unit port select, or demultiplexing, as
well as the clocking. The bits of port 1 are broken up as shown below.

b2..b0 Register select.

B1-5

M :DTR91B.AES,'WP4

- D'FW-8944-91003

b3 Clock. Clocking is pulsed. The clock should be set
up low for 100 _s, held high forlOO#s, and then
returned low for lOOv.s. Thus, the clock is normally
inactive.

Interface to the PDEU is through a Metrabyte PIO-12 plug-in board. The PIO-12 is a
general-purpose 24-bit parallel interface. Programming of the PIO-12 is straightforward:
three consecutive 1/O port addresses map to the 3 bytes of the parallel interface. These
ports are denoted pa, pb, and pc. The interface is has several internal registers must be
individually written and read. In interfacing to the PDEU, port pa of the PIO-12 is used as a

bidirectional data port, pb is used for address, and pc is used or clocks and other control
functions. Definitions of the PDEU's internal registers are given below.

Registers 8-15: b7..b0

Register 20 b7

Register 21 b2-b0

Register 24 b7..b0

Register 25 b7..b4

A/D MUX select. A write to register n
of any value switches the MUX to
channel n - 8.
Bias current.

b6..b3 DC gain setting.
Integration time.
A/D converter output, least significant
byte.

A/D converter output, most significant
byte._fill}

In setting either gain value or the integration, the binary code written to the PDEU is applied
to a set of switches which select a feedback component for the amplifier. Though any value
may be written to these switches, the component values in most of the circuits are such that

only one of the selected components will dominate in providing feedback for the amplifier.
The software provided thus uses only a 1-of-n type selection code. For AC gain, for
example, codes of 001,010, or 100 are written, with 100 resulting in the highest gain. For
bias current a 1 represents high bias, and a 0 represents low.

The bits of the control register, pc, are defined below.

b7

b6
b5
b3

Clock. Used to clock data into PDEU

for gain and integration settings.
Pulsed.

Active low latch line for analog MUX.
Start convert line for A/D converter.
A/D enable.

B1-6
M :DTRglS.AE5ANP4

6 5

D

C

A

0P470

L

OP&70

r

f

d
L OPA70

Note: Oig_o(emmet(ions (o

the DAC7541A'I ore not ehown

here. See Jheet 1

OF POOR QUALITY

Clf_t uL3K1OK

R41

SJ2K L_ p_7

I]
2

!
i I

I L'rw I ¢co_: 1 /_ i,_11_ '

i

[, i

_Lg,, _

__+_,+-

¥1G Fdter Driver

OAc'/e4tA

-.T_c_ l
33_ L

ut L | r

Y(G OSCILLATORDRIVER

lI_, I
u+o I -T"- ",_ j

+__.,-_, J .L ,=.,_ t

t + o,+,.,o
VCO DRIVER

0_¢'/641A

101(

J_K

1OK

+OK

T _

1K

l t.2 _ O.t.q,dr

<i
J
.-Z

;x
>2)(

IK

[_ P$

OF ?OOR QUALITY

IlAIle

C,R. Rogldote

CHErUbic _Al'Iml

0U&Ull"f _ BAI'I_

c=_,x,: Dynamics Technology. Inc.

'rrrLiE:

co_J

Microwave S_gnal Generator
Driver Circuit,,

D

C

B

A

6 5

D

C

74_CT240

B

A

ke,_IY

4X330

LmA UH8 _ t

74L$3|

, 1_, 12_
74L53:

Note: Analog connections to

the DAC7541A'e are not ehowe

here. See sheet 2

! ! T
3 2 1

I mm

D

LII

1

74HCTO0

74HCTO0

7_4CT_

DACTS41A

OR41nb

C.R. R_wdele
M

C_t-,"_O;,.;i_ QUALITY

= Dynamics Technology, Inc.

TI/1_:

Microwave Signal Generator
Digital Interface

C_ _m_ MIA IRIm N_

C

=¢JU._ _'_1 °'2

C

B

A

I

FOLDOLiI" /
6 5

,.-,,)

F

CB5 CONVERT

CB3 HOLD

c,=,_m,mC_

i

-,i_,D

_U

,4.1_

,_.ul

CZ>-_

U41A

_01t*,

u411

401._

L :

7 414c4_'18 I

u i

7_4_

I
, i r

U45A ' m_l

7_111

7_3

_lllp

_6J

_a

m

_urT R

I

M/lr4.

MvI_O_

Mmm

EXT SYNC >_-u

[11,14
,4U

.,me

INT SYNC A >_-m

INT SYNC B

J

FO_.DOUT /.

6

OF PO0t_ QUALITY

,,-,>

,,-,>

,,-,_

I
I

pTX !m

±
.'2"

,), J-,,

i _!±o

--¢4 T C7

i

T_

[
• I

• !

i

I° I_

.-_ , _c_ No: _ AI'MIaVtl- I04r[. I

J

<IN

I
<

°'

t

$ m,

3

,I

L

,_-Sll

!

E

I

_-iii

T

iC

,n-i

_, _-e

_s
- \ _l-i

I

DYNAMICS TECHNOLOGY, INC.

UtOOOA POWER SUPPLY PCB ASSEUBLY

o_rak

MI000A-3

J

_ DTW-8944-91003

3. Software

Program Description

A:I the control programs are is written in Turbo C. The programs

calib.c} are structurally simple, both executing a single list of instructions then exiting.
Program monltorconsists of a central loop which is continuously repeated. A "pseudo-
language" representation of the main loop is given below.

loop{

if keyboard is hit{
if input is ESC key then exit

if input is a valid character, invoke line editor and update screen

if input is cursor key, move cursor

read data from computer screen and update internal data
}

write updated data to signal generator

if PDEU data has changed, write to PDEU

If no keyboard activity is detected, the program just continuously updates the registers of the
signal generator interface. As you type inputs, a line editor modifies the data on the screen,
then the program reads these data off the screen directly, so what you see is what you get.
A complete listing of all programs is presented on the following pages.

B1-7
M :DTR91B.AESANP4

monitor.c DTW-8944-91003

#include "monitor.h"

/, */

main()

/, */

/* This program gives a real-time display of the outputs of the */

/* network analyzer's detectors and allows the user to adjust the */

/* frequency of operation, system gain, and diode bias current to */

/* achieve optimum performance. */

/, */

int curx = 19, cury = 12, exit = 0, j;

union REGS a, b;

char in char, asciil, ascii2, insert_mode = 0, change_settings = 0;

struct inst status status = {I, i, i, 1.0, 0.i};

char gl[8] = {0, i, 2, 3, 2, 3, 2, 3};

char g218] = {0, i, i, I, 2, 2, 3, 3};

FILE *streamer, *streamerl;

unsigned int out_vector[5];

char *int time[4] = {.... , "i0 ms ", "I00 ms ", "I s "};

char *range[8] = (......, 1 mV ", "300 uV", "100 uV", "30 uV ", "i0 uV ",

"3 uV ", "i uV "};

char *bias curs[2] = {"0.4 uA ", "I0 uA "};

double gain vals[8] = {i.0, 10.4933, 0.033179, 0.10493, 0.331790,

1.04933, 3.31790, 10.4933}, voltage;

char *formats[ll] = { , "%6.41f", "%5.11f", "%5.11f", "%5.21f",

"%5.21f", "%5.31f", "%6.41f"};

calstore = (int*) malloc(4096*sizeof(int));

clrscr();

dt_2801_set up();

/* Read in signal generator alignment calibration file. */

streamer = fopen("sweepcal.dat","rt") ;

for (j = 0; j < 4096; ++j)

fscanf(streamer, " %X", & (calstore[j])) ;

fclose (streamer) ;

/* Read settings from last run of program and restore program to */

/* previous state. */

B2-1

M :OTRgl B,AESANP4

_ monitor.c D'i3N-8944-91003

streamer = fopen("settings.dat","rt") ;

streamerl = fopen("values.dat","wt") ;

if (streamer) {

fscanf(streamer," %d %d %d %If %if", &(status.range),

&(status.integ) , & (status .bias current),

& (status. frequency), &(status.freq_step)) ;

fclose (streamer) ;

}

/* Set up program per previous settings or defaults */

initialize screen(status, curx, cury);

to_frequency(status.frequency);

data out();

set_gains_int(gl[status.range],g2[status.range], status.integ,

status.bias_current);

data in();

/* Begin main keyboard scan loop */

while (exit == 0) {

if (kbhit () != 0) {

/* if user hits ESC, write status and exit program */

if ((in_char = getch()) == 0xlb) {

exit = i;

streamer = fopen("settings.dat","wt");

fprintf(streamer,"%d\n%d\n%d\n%if\n%if\n",

status.range, status.integ, status.bias_current,

status.frequency, status.freq_step);

fclose(streamer);

/* if user hits a numeric key, and cursor is positioned */

/* to a numeric field, edit field */

else if (((in_char >= '0') && (in_char <= '9'))

II (in_char == ' ') II (in_char == 0x08)

I I (in char)) {

if ((cury == I0) I I (cury == ii))

edit_line(&curx, &ccury, in_char, insert_mode);

}

B2-2
M :DTR91B.AE5hNP4

monitor.c DTW-8944-91003

/* if user inputs 'w' write current diode readings to file */

else if (in_char == 'w') {

fprintf(streamerl, "%lf ", status.frequency);

for (j = O; j < 5; ++j) {

voltage = ((double)out_vector[j])/65535.0*lO.O

/ gain_vals[status.range];

fprintf(streamerl, formats[status.range], voltage);

fprintf (streamerl,) ;

)

fprintf(streamerl,"\n") ;

}

else if (in char == O) { /* 0 is prefix for arrow, function keys */

in char = getch();

switch(in_char) {

/* on left arrow move cursor left (within limits) */

case Ox4b : if (((cury == I0) I I (cury == ii))

&& (curx > 19)) --curx;

break;

/* on right arrow, move cursor right */

case Ox4d : if (((cury == I0) I I (cury == ii))

&& (curx < 24)) ++curx;

break;

/* on up arrow, move cursor up */

case 0x48 : if (cury == I0) {

curx = 19;

cury = 16;

}

else if (cury == 14) cury = 12;

else --cury;

break;

/* on down arrow move cursor down */

case Ox50 : if (cury == Ii) {

curx = 19;

B2-3

M :DTR91B.AE5JWP4

-- monitor.c DTW-8944-91003

cury = 12;

}

else if (cury == 12) cury = 14;

else if (cury == 16) cury = i0;

else ++cury;

break;

/* Insert key toggles insert mode */

case 0x52 : insert mode ^= 0x01;

/* change cursor style to fit insert mode */

if (insert mode == 0) {

a.h.ah = 0x01;

a.h.ch = 0x06;

a.h.cl = 0x07;

int86(0x10,&a,&b);

}

if (insert_mode == I) {

a.h.ah = 0x01;

a.h.ch = 0x00;

a.h.cl = 0x06;

int86(0x10,&a,&b);

}

break;

/* on delete, call line editor to modify screen */

case 0x53 : if ((cury == I0) I i (cury == Ii))

edit_line(&curx, &cury,

0x7F, insert_mode);

break;

/* on PgUp, increase sweeper frequency, bias current, */

/* gain or integration time, depending on cursor */

/* position. */

case 0x49 : if (cury == 12) (/* increase frequency */

status.frequency += status.freq_step;

if (status.frequency > 8.0)

status.frequency = 8.0;

if (status.frequency < 1.0)

status.frequency = 1.0;

B2-4
M :DTR91B.AE 5/%VP4

i

-- monitor.c DTW-8944-91003

/* make cursor invisible to update */

/* frequency value on screen */

a.h.ah = OxOl;

a.h.ch = 0x20;

a.h.cl = OxO0;

int86(OxlO,&a,&b);

gotoxy(19,10);

printf("%6.31f",status.frequency);

gotoxy(curx, cury);

/* restore cursor with correct style */

if (insert_mode == O) {

a.h.ah = OxOl;

a.h.ch = 0x06;

a.h.cl = 0x07;

int86(OxlO,&a,&b);

}

else{

a.h.ah = OxOl;

a.h.ch = OxO0;

a.h.cl = Ox06;

int86(OxlO,&a,&b);

}

else if (cury == 14) {/*increase bias current*/

++status.bias current;

if (status.bias current > I)

status.bias current = O;

printf("%s",

bias_curs[status.bias_current]);

}

else if (cury == 15){ /* increase int. time */

++status.integ;

if (status.integ > 3)

status.integ = I;

printf("%s",

int_time[status.integ]);

++change_settings;

}

else if (cury == 16) { /* increase gain */

--status.range;

B2-5
M :DTR91B.AE5P_/P4

-- monitor.c DTW-8944-91003

if (status.range < i)

status.range = 7;

printf("%s",

range[status.range]);

++change_settings;

)
break;

/* on PgDn, decrease sweeper frequency, bias current, */

/* gain or integration time, depending on cursor */

/* position. */

case 0x51 : if (cury == 12){ /* decrease frequency */

status.frequency -= status.freq_step;

if (status.frequency > 8.0)

status.frequency = 8.0;

if (status.frequency < 1.0)

status.frequency = 1.0;

/* cursor invisible */

a.h.ah = 0x01;

a.h.ch = 0x20;

a.h.cl = 0x00;

int86(0x10,&a,&b) ;

gotoxy(19,10);

printf("%6.31f",status.frequency);

/* restore cursor */

gotoxy(curx, cury) ;

if (insert_mode == 0){

a.h.ah = 0x01;

a.h.ch = 0x06;

a.h.cl = 0x07;

int86(0x10,&a,&b) ;

}

else{

a.h.ah = 0x01;

a.h.ch = 0x00;

a.h.cl = 0x06;

int86(0x10,&a,&b);

B2-6
M :DTR91B.AE5PNP4

-- monitor.c DTW-8944-91003

else if (cury == 14) {/*decrease bias current*/

--status.bias current;

if (status.bias current < 0)

status.bias current = I;

printf("%s",

bias_curs[status.bias_current]) ;

}

else if (cury == 15) {/*decrease int. time*/

--status.integ;

if (status.integ < I)

status.integ = 3;

printf("%s",

int_time[status.integ]);

++change_settings;

}

else if (cury == 16) {/* decrease gain */

++status.range;

if (status.range > 7)

status.range = I;

printf("%s",

range[status.range]);

++change_settings;

}
break;

/* The function keys FI, F2, and F3 allow the user */

/* to adjust the YTF offset to peak signal generator */

/* output power. */

case 0x3b : --YTFTWEAK; /* F1 */

break;

case 0x3c : ++YTFTWEAK; /* F2 */

break;

case 0x3d : YTFTWEAK = 0; /* F3 */

break;

}

}

gotoxy(curx, cury);

update_data(curx, cury, &status, insert_mode);

/* Write updated data out to hardware. */

to_frequency(status.frequency);

if (change_settings != 0) {

B2-7
M :DTR91B.AE5/WP4

-- monltor.c DTW-8944-91003

data out();

set_gains_int(gl[status.range],g2[status.range], status.integ,

status.bias_current);

data in () ;

)

change_settings = 0;

/* Wait for appropriate number of ticks of system clock before */

/* reading PDEU outputs to avoid oversampling. */

if (((status.integ == i) && (MOD ON > 0)) I I

((status.integ == 2) && (MOD_ON > 2)) I I

((status.integ == 3) && (MOD_ON > 18))){

read_ads(3,7,out_vector);

/* invisible cursor */

a.h.ah = 0x01;

a.h.ch = 0x20;

a.h.cl = 0x00;

int86(0x10,&a,&b);

/* write new output values, appropriately scaled */

for (j = 0; j < 5; ++j)(

gotoxy(4+10*j,18);

voltage = ((double)out vector[j])/65535.0*10.0

/ gain_vals[status.range];

printf(formats[status.range], voltage);

)

/* restore cursor */

gotoxy(curx, cury) ;

if (insert mode == 0) {

a.h.ah = 0x01;

a.h.ch = 0x06;

a.h.cl = 0x07;

int86(0x10,&a,&b);

)

else{

a.h.ah = 0x01;

a.h.ch = 0x00;

B2-8
M :DTRgl B.AES/WP4

monitor.c DTW-8944-91003

a.h.cl = 0x06;

int86(0x10,&a,&b);

}
MOD ON = 0; /* reset timer tick counter */

}

}
fclose (streamerl) ;

/* end of main routine */

**

/, *

void wait microsec(int argl)

/. *

/* Assembly language timing loop for short delays. *

/. *

{
asm

sl:

asm

asm

}

mov cx, argl

nop

loop sl

I* *I

void mode set(char mode)

/* */
/* Sets mode of programmable peripheral interface on PIO-12 board. */

/* *l

**

{
outportb(piol2_control, mode);

asm jmp $+2

}

M:DTR91B.AE5_NP4

B2-9

-- monitor.c DTW-8944-91003

**
/* */
void set_gains int(char gl, char g2, char intl, char bias)

/* */
/* This routine sets the gains of the various programmable ampli- */

/* fiers in the network analyzer's post-detection electronics. It */

/* also sets the integration time and the bias current. */

/* Communication with the post-detection electronics is through */

/* the PIO-12 24-bit parallel interface card. */

/. */
**

(

asm

outportb(piol2__pb, 0x14);

imp $+2

outportb(piol2_pa,

~((0x01 << (gl-l)) I (0x08 << (g2-1)) l

((bias << 7) & 0xS0)));

asm imp $+2

outportb(piol2_pc, 0x00);

asm imp $+2

outportb(piol2_pc, 0x80);

asm jmp $+2

outportb(piol2_pc, 0x00);

asm jmp $+2

asm

asm

asm

asm

asm

}

outportb(piol2_pb, 0x15);

jmp $+2

outportb(piol2_pa, ~(0x01 << (intl-l)));

jmp $+2

outportb(piol2_pc, 0x00);

jmp $+2

outportb(piol2_pc, 0xS0);

jmp $+2

outportb(piol2_pc, 0x00) ;

imp $+2

M:DTR91B.AES/WP4

B2-10

monitor.c DTW-8944-91003

/. ./

void data_in()

/* */
/* Set PIO-12 board up for input on one of its 8-bit ports. Keep */

/* other 2 ports in output mode for control. */

/* */

(

char mode;

asm

asm

asm

outportb(piol2__pa, 0x00) ;

jmp $+2

outportb(piol2_.pb, 0x00) ;

jmp $+2

outportb(piol2__pc, 0x00);

jmp $+2

mode = pa is input I pb is output l pclo is output

I pchi is output I pa_pchi is mode_0 I pb_pclo is mode_0

I mode set active;

mode set(mode);

/* */
void data out()

/* */

/* Set PIO-12 board up for output on all of its 8-bit ports. */

/* */

{

char mode;

mode = pa is output I pb is output I pclo is output

i pchi is output I pa_pchi is mode_0 I pb_pclo is mode_0

I mode set active;

mode set (mode) ;

B2-11
M :DTRglB.AE5/WP4

-- monitor.c DTW-8944-91003

/. ,/

void read_ads(char s_channel, char e_channel, unsigned int *out_vector)

/* */

/* Uses the 16-bit A/D converter in the post_detection electronics */

/* to read the analog outputs of the various synchronous detectors. */

/* s_channel is first channel to be read, e_channel is last. Array */

/* of converted values is returned in out vector. */

/* */

**

char bytel[2], i;

unsigned int *temp;

temp = (unsigned int *) bytel;

outportb(piol2_pc, 0xC0);

delay(2);

outportb(piol2 pc, 0xC8) ;

wait microsec(100);

for (i = s_channel; i <= e_channel; ++i) {

outportb(piol2__pb, 0x08 I (i & 0x07));

asm jmp $+2;

outportb(piol2_pc, 0x88);

asm jmp $+2;

outportb(piol2_pc, 0xC8);

wait microsec(10);

outportb(piol2_pc, 0xE8);

asm jmp $+2;

outportb(piol2_pc, 0xC8);

wait microsec(100);

outportb(piol2_pb, 0xl8);

asm jmp $+2;

bytel[0] = inportb(piol2_pa) ;

asm jmp $+2;

outportb(piol2_pb, 0x19);

asm jmp $+2;

bytel[l] = inportb(piol2_pa);

out_vector[i-s_channel] = ~(*temp);

}

outportb(piol2_pc, 0xC0);

82-12
M :OTR91 B.AE5,'WP4

_ monitor.c DTW-8944-91003

/. ./
void dt error check()

/* */
/* This routine is called whenever an error is reported by the Dat_ */

/* Translation board. It queries the board, interprets the resulting */

/* error code, and prints an error message. */

/* */

int i;

int ready = 0;

int timeout = -32767;

char a, b, reg;

for (i = 0; i < 100; ++i){}

outportb(dt_2801 command_register, READ ERR) ;

while (ready == 0) {

for (i = 0; i < I00; ++i){}

reg = inportb(dt_2801_status_register) ;

if ((reg & DOR) == DOR)

ready = i;

else(

++t imeout ;

if (timeout == 32767) {

printf("Device time-out on DT-2801 board,\n");

printf("during dt error check.\n") ;

ready = 1 ;

}

)

a = inportb(dt_2801_data_register);

ready = 0;

timeout = -32767;

while (ready == 0) {

for (i = 0; i < i00; ++i) {}

reg = inportb(dt_2801_status_register);

if ((reg & DOR) == DOR)

ready = i;

else{

++timeout;

if (timeout == 32767){

printf("Device time-out on DT-2801 board,\n");

B2-13
M :DTR91B.AE5/WP4

-- monitor.c DTW-8944-91003

printf("during dt error check.\n");

ready = 1 ;

}

}
}

b = inportb (dt_2801_data_register) ;

if ((a & 0x02) == 0x02)

printf("Command Overwrite Error\n") ;

if ((a & 0x04) == 0x04)

printf("Clock Set Error\n");

if ((a & 0x08) == 0x08)

printf("Digital Port Select Error\n") ;

if ((a & 0xl0) == 0xl0)

printf("Digital Port Set Error\n");

if ((a & 0x20) == 0x20)

printf("DAC Select Error\n");

if ((a & 0x40) == 0x40)

printf("DAC Clock Error\n");

if ((a & 0x80) == 0x80)

printf("DAC No. Conversions Value Error\n");

if ((b & 0x01) == 0x01)

printf("A/D Channel Error\n");

if ((b & 0x02) == 0x02)

printf("A/D Gain Error\n");

if ((b & 0x04 == 0x04)

printf("A/D Clock Error\n");

if ((b & 0x08 == 0x08)

printf("A/D Multiplexer Errorkn");

if ((b & 0xl0 == 0xl0)

printf("A/D No. Conversions Value Error\n");

if ((b & 0x20 == 0x20)

printf("Data Where Command Expected Error\n");

B2-14
M:DTR91B.AES,'WP4

monitor.c DTW-8944-91003

/. */
void dt set wait(unsigned char bytecode)

/. - _ ,/

/* Part of the handshaking with the Data Translation board, this */

/* routine waits until a particular byte pattern is set in the DT- */

/* 2801's status register. */

/. */

**

char ready, i, idle;

int timeout;

ready = 0;

timeout = -32767;

while (ready == 0) (

/*idle = 0;

while (idle <= i0) ++idle;*/

i = inportb(dt_2801_status_register);

if ((i & 0x80) == 0xS0) dt error check();m

if ((i & bytecode) == bytecode)

ready = I;

else

{
++timeout;

if (timeout == 32767){

printf("Device time-out on DT-2801 board,\n");

printf("during dt_set_wait.\n");

ready = I;

}

B2-15

M :DTR91B.AE5/WP4

-- monitor.c DTW-8944-91003

**
/* */
void dt_clear_wait(unsigned char bytecode)

/* Part of the handshaking with the Data Translation board, this */

/* routine waits until a particular byte pattern is cleared in the */

/* DT-2801's status register. */

l* *l
**

char ready, i, idle;

int timeout;

ready = 0;

timeout = -32767;

while (ready == 0){

/*idle = 0;

while (idle <= i0) ++idle;*/

i = inportb(dt_2801_status_register);

if ((i & 0x80) == 0x80) dt error check();

if ((i & bytecode) == 0)

ready = i;

else

{

++timeout;

if (timeout == 32767){

printf("Device time-out on DT-2801 board,\n");

printf("during dt clear wait.\n");

ready = I;

)

B2-16
M :DTR91B.AES/WP4

monitor.c D13N-8944-91003

/. */
void write_digital(unsigned char byte_select, unsigned char out_byte)

/. *!

/* This I/O routine writes the byte out_byte to the DT-2801 parallel */

/* port selected by byte_select. The value of byte_select can be 1 */

* or 0 since the DT-2801 has only 2 ports. */

. */

int i;

outportb (dt_2801_command_register, WRITE_DIG_IMM) ;

dt clear wait (DIF) ;

outportb (dt_2801_data_register, byte_select) ;

dt clear wait (DIF);

outportb (dt_2801_data_register, out_byte) ;

dt clear wait (DIF) ;

dt set wait(READY);

B2-17

M :DTR91B.AESPNP4

-- monitor.c DTW-8944-91003

**
/* */
void dt 2801 init()

/. - _ ./

/* This routine initializes the Data Translation board. It first */

/* resets the board, then writes values into several control */

/* registers. */

/. */
**

char dummy;

outportb (dt_280 l_command_register, STOP) ;

dummy = 0 ;

while (dummy <= 100) ++dummy;

inportb (dt_2801_data_register) ;

dummy = 0 ;

while (dummy <= i00) ++dummy;

outportb (dt_280 l_command_register, RESET) ;

dt set wait (DOR) ;

inportb (dt_280 l_data_register) ;

dt set wait (READY);

outportb (dt_280 l_command_register, CLEAR_ERROR) ;

dt clear wait(DIF);

dt set wait (READY);

outportb (dt_280 l_command__registe r, SET_INT_CLK) ;

dt clear wait (DIF);

outportb(dt_2801_data_register, 0xlE) ;/*clock period = 75 us*/

dt clear wait(DIF);

outportb (dt_2801_data_register, 0x00) ;

dt clear wait (DIF) ;

dt set wait(READY);

outportb(dt_2801_command_register, SET A D PARAMS) ;

dt clear wait (DIF) ;

outportb(dt_2801_data_register, 0x00) ;/*gain code*/

dt clear wait(DIF) ;

outportb(dt_2801_data_register, 0x00) ;/*start channel*/

dt clear wait(DIF) ;

outportb(dt_2801_data_register, 0x04) ;/*end channel*/

dt clear wait(DIF);

outportb(dt_2801_data_register, 0x05) ;/*lo(number of samples)*/

dt clear wait(DIF);

outportb(dt_2801_data_register, 0x00) ;/*hi(number of samples)*/

B2-18

M :DTR91B.AES/WP4

monitor.c DTW-8944-91003

dt clear wait (DIF) ;

dt set wait (READY);

outportb (dt_2801 command register, SET_DIGITAL_OUTPUT) ;

dt clear wait(DIF);

out--portbTdt_2801_data_register, BOTH) ;/*set both ports for output*/

dt clear wait(DIF) ;

dt set wait(READY);

**
/, */
void write to YTF(unsigned int value)

/* */
/* This I/O routine writes the integer value to the YIG-tuned */

/* filter's control port. */

/, */
**

unsigned char a;

value += YTFTWEAK;

YTFLSB = value;

write_digital(0, ~YTFLSB);

PORT1 = PORT1 & 0xFS;

write_digital(l, PORT1);

PORT1 = PORT1 & 0xF7;

write_digital(l, PORT1);

PORT1 _ (PORT1 t 0x08);

write_digital(l, PORT1) ;

UPPERS = ((value >> 8) & 0x0F) _ (UPPERS & 0xF0);

write_digital(0, ~UPPERS);

PORT1 = (PORT1 & 0xF8) I 0x02;

wrlte_digital(l, PORT1);

PORT1 = PORT1 & 0xF7;

write_digital(l, PORT1);

PORT1 = (PORT1 J 0x08) ;

write_digital(l, PORT1);

B2-19

M:DTR91B.AES/WP4

-- monitor.c DTW-8944-91003

**
/. ,/
void write to YTO(unsigned int value)

/* */

/* This I/O routine writes the integer value to the YIG-tuned */

/* oscillator's control port. */

/* */

YTOLSB = value;

write_digital(0, ~YTOLSB);

PORT1 = (PORT1 & 0xF8) 1 0x01;

write_digital(l, PORT1);

PORT1 = PORT1 & 0xF7;

write_digital(l, PORT1);

PORT1 = (PORT1 1 0x08);

write_digital(l, PORT1);

UPPERS = ((value >> 4) & 0xF0) I (UPPERS & 0x0F);

write_digital(0, ~UPPERS);

PORT1 = (PORT1 & 0xF8) I 0x02;

wr_te_digital(l, PORT1);

PORT1 = PORT1 & 0xF7;

write_digital(l, PORT1);

PORT1 = (PORT1 1 0x08);

wrlte_digital(l, PORT1);

B2-20
M:DTR91 B,AES/WP4

monitor.c DTW-8944-91003

./
/,

void write to VCO(unsigned int value) */

/*
/* Similar to write to YTF, this routine programs the signal */

/* generator's voltage-controlled oscillator. */
*/

/*

VCOMSB = (value >> 4) & 0xF0;

write_digital(0, ~VCOMSB);

PORT1 = (PORT1 & 0xF8) l 0x05;

write_digital(l, PORT1);

PORT1 = PORT1 & 0xF7;

write_digital(l, PORT1);

PORT1 = (PORT1] 0x08);

write_digital(l, PORT1) ;

VCOLSB = value;

write_digital(0, ~VCOLSB) ;

PORT1 = (POKTI & 0xFS) 1 0x04;

write_digital(l, PORT1);

PORT1 = PORT1 & 0xF7;

write digital(l, PORT1);

PORT1 = (PORT1 1 0x08);

write_digital(l, PORT1);

M :DTR91B.AE5,NVP4

B2-21

-- monltor.c Dl"W-8944-91003

/* */
void write_switch(unsigned char value)

/* */
/* Similar to write to YTF, this routine programs the signal */

/* generator's internal selector switch. */

/* */
**

CONTROL = value;

write_digital(0, ~CONTROL);

PORT1 = (PORT1 & 0xF8) I 0x03;

write_digital(l, PORT1);

PORT1 = PORT1 & 0xF7;

write_digital(l, PORT1);

PORT1 = (PORT1 1 0x08);

write_digital(l, PORT1);

82-22
M :DTR91B.AE 5/WP4

monltor.c DTW-8944-91003

/. */
void to_frequency(double frequency)

/* */
/* This routine uses write to YTF, write to YTO, write to VCO, an_ */

/* write switch to command the signal generator to the specified */

/* frequency. To keep the filter aligned with the oscillator */

/* frequencies, the global array cal store[] is referenced. */

/* cal store[] contains a look-up table generated from an alignment */

/* routine which gives the oscillator code which lines up with a */

/* given filter code value. */

/* */
**

int i;

unsigned int YTF_code, YTO_code, VCO_code;

unsigned char CONTROL_code;

double temp, templ;

static double YTF_freq[6] = {I.0, 2.691, 4.394, 6.098, 7.798, 8.0};

static double YTF val[6] = (0.0, 994.0, 1989.0, 2983.0, 3977.0,

4095.0};

if ((frequency <= 8.0) && (frequency >= 2.0))(

CONTROL code = 0x02;

write_switch(CONTROL_code);

for (i = 0; i < 6; ++i) {

temp = frequency - YTF_freq[i];

if (temp <= 0) break;

}

temp = YTF val[i-l] + (frequency - YTF_freq[i-l])

7 (YTF_freq[i] - YTF_freq[i-l])

* (YTF val[i] - YTF val[i-1]) ;

templ = modf (temp, &temp) ;

if (templ> 0.5) temp = temp + 1.0;

YTF_code = (unsigned int) temp;

write to YTF(YTF_code);

write to YTO(calstore[YTF_code]);

}

else if ((frequency < 2.0) && (frequency >= 1.0)) (

CONTROL code = 0x00;

write_switch(CONTROL_code);

temp = YTF val[0] + (frequency - YTF_freq[0])

(YTF_freq[l] - YTF_freq[0])

B2-23
M:DTR91B.AE5_NP4

- monltor.c DTW-8944-91003

* (YTF_vaI[I] - YTF_vaI[0]);

templ= modf(temp, &temp);

if (templ> 0.5) temp = temp + 1.0;

YTF_code = (unsigned int) temp;

write to YTF(YTF_code);

write to VCO(calstore[YTF_code]);

**
/* */
void read_from_screen(int x, int y, int n, char *st)

/* */
/* Uses DOS services to read data from the screen. Returns a string */

/* of length n read starting at position x,y on the screen. */

/* */
**

int i;

union REGS a;

gotoxy(x,y) ;

for (i = 0; i < n; ++i){

a.h.ah = 0x08;

a.h.bh = 0x00;

int86(0x10,&a,&a);

st[i] = a.h.al;

gotoxy(++x,y);

)

B2-24
M :DTR91B.AE5_NP4

monitor.c DTW-8944-91003

**
/* ./
void update data(int x, int y, struct inst_status *a• char ins_mode)

/* */

/* Reads frequency and step size from screen and updates status data• */

/* */

**

char st[8] = {•

union REGS q;

• • • • • f I • • f • • • • • }• • • f • • • • • • • • • /

/* invisible cursor */

q.h.ah = 0x01;

q.h.ch = 0x20;

q.h.cl = 0x00;

int86(0x10,&q,&q);

read_from_screen(19,10,6,st);

if (sscanf(st," %if",&(a->frequency)) != 0) {

if (a->frequency > 8.0) a->frequency = 8.0;

if (a->frequency < 1.0) a->frequency = 1.0;

}

read_from__screen (19• ii, 6, st) ;

if (sscanf(st, " %If",& (a->freq_step)) != 0) {

if (a->freq_step > 8.0) a->freq__step = 8.0;

if (a->freq_step < 0.0) a->freq_step = 0.0;

}

/* restore cursor */

gotoxy (x, y) ;

if (ins mode == 0) {

q.h.ah = 0x01;

q.h.ch = 0x06;

q.h.cl = 0x07;

int86(0x10,&q,&q);

}

else{

q.h.ah = 0x01;

q.h.ch = 0x00;

q.h.cl = 0x06;

int86(0x10,&q,&q);

}

M :DTR91B.AE5/WP4

B2-25

_ monitor.c DTW-8944-91003

**
/. ./
void initialize screen(struct inst status a, int x, int y)

/* */
/* Sets up user screen in accordance with instrument status */

/* */

**

char *int time[4] = { , "I0 ms", "I00 ms", "i s"};

char *range[8] = { , "i mV ", "300 uV", "I00 uV", "30 uV ", "i0 uV

"3 uV ", "I uV "};

char *bias curs[2] = {"I0 uA", "0.4 uA"};

gotoxy(4,10) ; printf("Frequency:

gotoxy(4,11) ; printf("Freq. Inc. :

gotoxy(4, 12) ; printf("Step:

%6.31f GHz",a.frequency) ;

%6.31f GHz",a.freq__step) ;

U/D ") ;

gotoxy(4,14) ; printf("Bias Curr. :

gotoxy(4,15) ; printf("Int. Time:

gotoxy(4,16) ; printf("Range:

gotoxy (x, y) ;

%s", bias curs[a.bias current]);

%s", int_time[a.integ]);

%s", range[a.range]);

TT

F

B2-26
M:DTR91B.AE5/WP4

_ monitor.c DTW-8944-91003

/. ,/
void edit_line(int *curx, int *cury, char in_char, char insert_mode)

/* */
/* Simple line editor for updating frequency and step size */

/* */

int i;

char tempi20];

if ((*curx > 20) && (in_char == 0x08)) { /* Backspace */

gettext(*curx, *cury, 24, *cury, temp);

puttext(*curx - i, *cury, 23, *cury, temp);

gotoxy(24,*cury);

putchar(' ');

--(*curx);

)

else if (in_char == 0x7F) { /* Delete */

gettext(*curx+l, *cury, 24, *cury, temp);

puttext(*curx, *cury, 23, *cury, temp);

gotoxy(24,*cury);

putchar(' ') ;

}

else if (insert mode == 0) {

putchar(in_char);

*curx = wherex();

if (*curx > 24) --(*curx);

}

else {

gettext(*curx, *cury, 24, *cury, temp);

puttext(*curx + I, *cury, 24, *cury, temp);

putchar(in_char);

++(*curx);

}

B2-27
M :DTR91B,AES/WP4

monitor.h DTW-8944-91003

#include <alloc.h>

#include <conio.h>

#include <dos.h>

#include <fcntl.h>

#include <graphics.h>

#include <io.h>

#include <math.h>

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <sys\stat.h>

#include <time.h>

#define sqr(x) ((x)*(x))

#define piol2_pa Ox200

#define piol2_pb 0x201

#define piol2_pc 0x202

#define piol2_control 0x203

#define pclo is input OxOl

#define pclo is output OxO0

#define pb_is_input Ox02

#define pb is output OxO0

#define pb_pclo is mode_O OxO0

#define pb_pclo is mode_l 0x04

#define pchi is input Ox08

#define pchi is output Ox00

#define pa is input 0x10

#define pa is output Ox00

#define pa__pchi is mode_O OxO0

#define pa_pchi is mode_l Ox20

#define pa__pchi is mode_20x40

#define set reset mode 0x00

#define mode set active Ox80

#define number of channels 8

#define pi 3.14159265358979324

B3-1

M:DTR91 B.AES/WP4

- monltor.h DTW-8944-91003

#define twopi 6.28318530717958648

#define v 1 299792458.0

#define CW 0

#define SWEEP 1

#define CW PULSE 2

#define SWEEP PULSE 3

#define dt_2801_status_register 0x02ED

#define dt_2801_command_register 0x02ED

#define dt_2801_data_register 0x02EC

#define pi 3.14159265358979324

#define twopi 6.28318530717958648

#define v 1 299792458.0

#define STOP 0x0F

#define RESET 0x00

#define CLEAR ERROR 0x01

#define SET INT CLK 0x03

#define SET DIGITAL OUTPUT 0x05

#define SET A D PARAMS 0x0D

#define WRITE DIG IMM 0x07

#define READ ERR 0x02

#define BOTH 0x02

#define DOR 0x01

#define DIF 0x02

#define READY 0x04

#define COMMAND 0x08

#define CERROR 0x80

struct inst status {

char range, integ, bias_current;

double frequency, freq_step;

);

unsigned char YTOLSB, YTFLSB, UPPERS, CONTROL, PORT1, VCOLSB, VCOMSB;

int YTFTWEAK = 0, MOD ON = 0, ODD NUM = 0;

double FOFFSET = 0.0, DELTAF = 0.0;

int *calstore;

void wait microsec(int argl);

void mode set(char mode);

void set_gains_int(char gl, char g2, char intl, char bias);

void data in();

void data out();

vozd read__ads(char s_channel, char e_channel, unsigned int *out_vector);

void dt error check();

void dt set wait(unsigned char bytecode);

void dt clear wait(unsigned char bytecode);

B3-2

M :DTR91B.AESIWP4

-- monltor.h DTW-8944-91003

void write_digital(unsigned char byte_select, unsigned char out_byte);

void dt_2801_set up();

void write to YTF(unsigned int value);

void write to YTO(unsigned int value);

void write to VCO(unsigned int value);

void write_switch(unsigned char value);

void to_frequency(double frequency);

void read from screen(int x, int y, int n, char *st);

void update_data(int x, int y, struct inst_status *a, char ins_mode);

void initialize screen(struct inst status a, int x, int y);

void edit line(int *curx, int *cury, char in_char, char insert_mode);

B3-3

M :DTR91B.AE5_NP4

- calib.c DTW-8944-91003

#include "caldefs.h"

/* */
main()
/* ./
/* This program prompts for a frequency range and PDEU voltage range */

/* and steps through the calibration procedure prompting the user at */

/* each step. No calibration calculations are performed here. The */

/* raw data from the calibration measurements are stored in a file. */

/* */
**

char mode, out_vall, out_val2, out_val3, instring[20];

char *range[8] = (.... , "i mV ", "300 uV ", "i00 uV ", "30 uV ",

"10 uV ", "3 uV ", "I uV "};

int i, j, k, i, OK, gain_val, nfreq;

unsigned int out vector[5];

double a, frequency, sum[5], sum_sq[5], sigma,

offset[5], noise[5], ***big_matrix, **short_matrix,

**open_matrix, **load_matrix, **meas_matrix, voltage,

freql, freq2, dfreq;

char dummy;

FILE *streamer, *streamerl;

/* Open files and allocate space for data matrices */

calstore = (int*) malloc(4096*sizeof(int));

streamer = fopen("sweepcal.dat","rt");

for (j = 0; j < 4096; ++j)

fscanf(streamer, " %X", &(calstore[j]));

fclose(streamer);

big_matrix =

(double ***) farmalloc((unsigned) Nslides*sizeof(double**));

if (!big_matrix) nrerror("Memory allocation error.");

for (i = 0; i < Nslides; ++i) (

big_matrix[i] =

(double **) farmalloc((unsigned) Nfreqs*sizeof(double*));

if (!(big_matrix[i])) nrerror("Memory allocation error.");

}

for (i = 0; i < Nslides; ++i)

for (j = 0; j < Nfreqs; ++j) {

B4-1

M: DTR91B.AES/WP4

-- calib.c DTW-8944-91003

big_matrix[i] [j] =

(double *) farmalloc((unsigned) Ndiodes*sizeof(double));

if (! (big_matrix[i] [j])) nrerror("Memory allocation error.");

}
short matrix =

(double **) farmalloc((unsigned) Nfreqs*sizeof(double*);

if (!short__matrix) nrerror("Memory allocation error.");

for (i = 0; i < Nfreqs; ++i) {

short_matrix[i] =

(double *) farmalloc((unsigned) Ndiodes*sizeof(double) ;

if (!(short matrix[i])) nrerror("Memory allocation error.");

}

open__mat rix =

(double **) farmalloc((unsigned) Nfreqs*sizeof(double*) ;

if (!open_matrix) nrerror("Memory allocation error.");

for (i = 0; i < Nfreqs; ++i) {

open_matrix [i] =

(double *) farmalloc((unsigned) Ndiodes*sizeof(double) ;

if (!(open_matrix[i])) nrerror("Memory allocation error.");

}
load matrix =

(double **) farmalloc((unsigned) Nfreqs*sizeof(double*);

if (!load_matrix) nrerror("Memory allocation error.");

for (i = 0; i < Nfreqs; ++i) {

load matrix[i] =

(double *) farmalloc((unsigned) Ndiodes*sizeof(double) ;

if (!(load_matrix[i])) nrerror("Memory allocation error.");

)
meas matrix =

(double **) farmalloc((unsigned) Nfreqs*sizeof(double*);

if (!meas_matrix) nrerror("Memory allocation error.");

for (i = 0; i < Nfreqs; ++i) (

meas matrix[i] =

(double *) farmalloc((unsigned) Ndiodes*sizeof(double) r

if (! (meas_matrix[i])) nrerror("Memory allocation error.") ;

dt_2801_init(); * initialize Data Translation board */

data_out(); * set PIO-12 interface for output to the PDEU */

clrscr();

OK = 0; * prompt for PDEU range setting */

while (OK == 0) {

printf("Select preamp sensitivity:\n");

printf("l - imV full scale.\n");

B4-2

M: DTR91B.AES/WP4

-- callb.c DTW-8944-91003

printf("2 - 300uV full scale.\n") ;

printf("3 - 100uV full scale.\n") ;

printf("4 - 30uV full scale.\n") ;

printf("5 - 10uV full scale.\n") ;

printf("6 - 3uV full scale.\n");

printf("7 - luV full scale.\n");

scanf(" %d", &gain_val) ;

printf("You have selected %s full scale.\n", range[gain_val]) ;

printf("Is this correct? (Y/N) \n") ;

scanf("%s", instring) ;

if ((instring[0] == 'Y') It (instring[0] == 'y'))

OK = i;

/* select gain codes for specified range setting */

switch(gain_val) {

case 1 : set_ga_ns_int(l,l,3,0);

break;

case 2 : set_galns_int(2,1,3,0);

break;

case 3 : set_gaans_int(3,1,3,0);

break;

case 4 : set_galns_int(2,2,3,0);

break;

case 5 : set_galns_int(3,2,3,0) ;

break;

case 6 : set_ga_ns_int (2, 3, 3, 0) ;

break;

case 7 : set_gains_int(3,3,3,0);

break;

}

data_in(); /* set PIO-12 interface for data output to PDEU */

outportb(piol2_pc,0xC0);

delay(50); /* perform 1 A/D conversion to clear system */

read_ads(3,7,out_vector);

OK = 0;

/* prompt for frequency range */

while (OK == 0) {

printf("\n\nInput start frequency (GHz), stop frequency (GHz), and\n") ;

printf("number of frequency points, separated by commas.\n");

scanf(" %if, %if, %d", &freql, &freq2, &nfreq);

B4-3

M: DTRglB.AK5/WP4

-- callb.c DTW-8944-91003

if (freql < 1.0) freql = 1.0;

if (freql > 8.0) freql = 8.0;

if (freq2 < 1.0) freq2 = 1.0;

if (freq2 > 8.0) freq2 = 8.0;

if (nfreq < I) nfreq = i;

if (nfreq > 51) nfreq = 51;

printf("You have selected\n") ;

printf("Start frequency: %5.31f GHz\n", freql) ;

printf("Start frequency: %5.31f GHzkn",freq2) ;

printf("Number of points: %d \n", nfreq) ;

printf("Is this correct? (Y/N) kn") ;

scanf("%s", instring) ;

if ((instring[0] == 'Y') J i (instring[0] == 'y'))

OK = I;

/* prompt for calibration file name and begin calibration */

printf("Output file name? ") ;

scanf ("%s", instring) ;

streamer = fopen(instring,"wt") ;

printf("Checking system. Please wait.");

YTFTWEAK = 0x0800;

to_frequency (freql) ;

sleep (2) ;

/* read system offsets and noise levels */

for (i = 0; i < Ndiodes; ++i) sum[i] = sum_sq[i] = 0.0;

for (i = 0; i < 20; ++i) {

delay (500) ;

read ads (3, 7, out vector) ;

for (j = 0; j < 5; ++j) {

voltage = ((double)out_vector[j])/65535.0*10.0;

sum[j] += voltage;

sum_sq[j] += voltage * voltage;

}

)
clrscr () ;

for (i = 0; i < 5; ++i) {

offset[i] = sum[i] = sum[i] / 20.0;

noise[i] = sigma

= sqrt((sum_sq[i]-20.0*sum[i]*sum[i])/19.0) ;

printf("Channel %id: offset = %7.41fV, s. dev. = %7.41fV.kn",

B4-4

H: DTRglB.AKS/WP4

-- calib.c DTW-8944-91003

i, sum[i], sigma);

YTFTWEAK = 0x0000;

to_frequency (freql) ;

/* main calibration loop */

printf("\n\n");

fflush(stdin) ;

for (i = 0; i < Nslides; ++i) {

clrscr();

printf("Slide short to position %2d.kn", i+l);

printf(" Press RETURN when ready. .7");

scanf ("%c", &dummy) ;

clrscr();

for (j = 0; j < nfreq; ++j) (

frequency = freql + ((double) j) / ((double) (nfreq-l))

* (freq2 - freql) ;

to_frequency(frequency);

gotoxy(4,10);

printf("Frequency: %5.31f GHz", frequency);

sleep(2);

read_ads(3,7,out_vector);

for (k = 0; k < 5; ++k)

big_matrix[i] [j] [k] =

(double)out_vector[k]/65535.0*10.0

- offset[k];

}

clrscr () ;

printf("Place standard no. 1 at reference plane.\n");

printf(" Press RETURN when ready. .7");

scanf("%c", &dummy);

clrscr();

for (j = 0; j < nfreq; ++j) {

frequency = freql + ((double) j) / ((double) (nfreq-l))

* (freq2 - freql);

to_frequency(frequency);

gotoxy(4,10);

printf("Frequency: %5.31f GHz", frequency);

sleep (2) ;

read_ads (3,7, out vector) ;

for (k = 0; k < 5; ++k)

B4-5

M: DTRglB,A_5/WP4

- call b.c DTW-8944-91003

short_matrix [j] [k] =

(double) out vector[k]/65535.0*10.0

- offset [k] ;

}

clrscr () ;

printf("Place standard no. 2 circuit at reference plane.\n");

printf(" Press RETURN when ready. .7") ;

scanf("%c", &dummy) ;

clrscr () ;

for (j = 0; j < nfreq; ++j) (

frequency = freql + ((double) j) / ((double) (nfreq-l))

* (freq2 - freql) ;

to_frequency (frequency) ;

gotoxy (4, i0) ;

printf("Frequency: %5.31f GHz", frequency) ;

sleep (2) ;

read_ads (3,7, out_vector) ;

for (k = 0; k < 5; ++k)

open_matrix [j] [k] =

(double) out vector[k]/65535.0*10.0

- offset [k] ;

}

clrscr () ;

printf("Place standard no. 3 at reference plane.\n") ;

printf(" Press RETURN when ready. .7") ;

scanf("%c", &dummy) ;

clrscr () ;

for (j = 0; j < nfreq; ++j) {

frequency = freql + ((double) j) / ((double) (nfreq-l))

* (freq2 - freql) ;

to_frequency (frequency) ;

gotoxy(4,10) ;

printf("Frequency: %5.31f GHz", frequency) ;

sleep (2) ;

read_ads (3, 7, out_vector) ;

for (k = 0; k < 5; ++k)

load_matrix [j] [k] =

(double) out_vector [k]/65535.0"i0.0

- offset [k] ;

}

/* write data to output file */

fprintf(streamer, "%d\n", gain_val) ;

B4-6

M: DTR91B.AES/WP4

calib.c DTW-8944-91003

fprintf(streamer, "%ifin", freql) ;

fprintf(streamer, "%ifin", freq2) ;

fprintf(streamer, "%d\n", nfreq) ;

for (k = 0; k < Ndiodes; ++k)

", offset [k]) ;fprintf(streamer, "%9.51f

fprintf (streamer, "in") ;

for (k = 0; k < Ndiodes; ++k)

fprintf(streamer, "%9.51f

fprint f (streamer, "in") ;

for (j = 0; j < nfreq; ++j) {

" noise [k]) ;

for (i = 0; i < Nslides; ++i) {

for (k = 0; k < Ndiodes; ++k)

fprintf (streamer, "%9.51f ",

big_matrix[i] [j] [k]) ;

fprintf (streamer, "in") ;

}
for (k = 0; k < Ndiodes; ++k)

fprintf(streamer, "%9.51f

fprintf(streamer, "in") ;

for (k = 0; k < Ndiodes; ++k)

fprintf(streamer, "%9.51f

fprintf(streamer, "in") ;

for (k = 0; k < Ndiodes; ++k)

fprintf(streamer, "%9.51f

fprintf(streamer, "in") ;

", short_matrix[j] [k]) ;

", open_matrix[j] [k]) ;

", load matrix[j] [k]) ;

fclose (streamer) ;

printf("\ninCalibration complete. File %s written.", instring);

/* Free memory */

for (i = (Nfreqs-l); i >= 0; --i) farfree(meas_matrix[i]) ;

farfree (meas_matrix) ;

for (i = (Nfreqs-l); i >= 0; --i) farfree(load_matrix[i]) ;

farfree(load matrix) ;

for (i = (Nfreqs-l); i >= 0; --i) farfree(open matrix[i]);

farfree (open_matrix) ;

for (i = (Nfreqs-l); i >= 0; --i) farfree(short_matrix[i]);

farfree (short_matrix) ;

for (i = (Nslides-l); i >=0; --i)

for (j = (Nfreqs-l); j >= 0; --j)

farfree (big__matrix[i] [j]) ;

for (i = (Nslides-l); i >=0; --i) farfree(big_matrix[i]);

B4-7

M : DTRglB. AE5/WF'4

-- calib.c DTW-8944-91003

farfree(big_matrix);

farfree(calstore) ;

/* End of main routine */

{
asm

sl:

asm

asm

}

mov cx, argl

nop

loop sl

void interrupt (*oldfunc) () ;

/* */
void nrerror(char error text[])

/* */
/* General purpose error handling routine. */

/* */
**

printf("%s\n",error_text) ;

printf("...now exiting to

exit(l);

system...\n");

B4-8

M: DTRglB.AKS/WP4

-- calib.c DTW-8944-91003

/* */
void mode set(char mode)

/* */
/* Sets mode of programmable peripheral interface on PIO-12 board. */

/* */

**

outportb(piol2_control, mode);

B4-9

M :DTR91B. AE5/WP4

-- calib.c DTW-8944-91003

/* *t
void dt error check()

/* */
/* This routine is called whene_,er an error is reported by the Data */

/* Translation board. It queries the board, interprets the resulting */

/* error code, and prints an error message. */

/* */
**

int i;

int ready = 0;

int timeout = -32767;

char a, b, reg;

for (i = 0; i < 100; ++i) {)

outportb(dt_2801_command register, READ ERR) ;

while {ready == 0) {

for (i = 0; i < i00; ++i) {}

reg = inportb(dt_2801_status_register);

if ((reg & DOR) == DOR)

ready = i;

else{

++timeout;

if (timeout == 32767){

printf("Device time-out on DT-2801 board,\n");

printf("during dt error check.\n");

ready = 1 ;

)

)

a = inportb(dt_2801_data_register);

ready = 0;

timeout = -32767;

while {ready == 0){

for (i = 0; i < 100; ++i) {}

reg = inportb(dt_2801_status_register);

if ((reg & DOR) == DOR)

ready = i;

else{

++timeout;

if (timeout == 32767){

printf("Device time-out on DT-2801 board, kn");

B4-10

M :DTRglB.AE5/WF4

- calib.c DTW-8944-91003

printf("during dt error check.\n");

ready = I;

}

}
}

b = inportb (dt_2801_data_register) ;

if (a & 0x02) == 0x02

printf("Command Overwrite Errorkn");

if (a & 0x04) == 0x04

printf("Clock Set Error\n");

if (a & 0x08) == 0x08

printf("Digital Port Select Error\n");

if (a & 0xl0) == 0xl0

printf("Digital Port Set Error\n");

if (a & 0x20) == 0x20

printf("DAC Select Error\n");

if (a & 0x40) == 0x40

printf("DAC Clock Error\n");

if (a & 0x80) == 0x80

printf("DAC No. Conversions Value Error\n");

if (b & 0x01) == 0x01

printf("A/D Channel Error\n");

if (b & 0x02) == 0x02

printf("A/D Gain Error\n");

if ((b & 0x04) == 0x04

printf("A/D Clock Error\n");

if ((b & 0x08) == 0x08)

printf("A/D Multiplexer Error\n");

if ((b & 0xl0) == 0xl0)

printf("A/D No. Conversions Value Error\n");

if ((b & 0x20) == 0x20)

printf("Data Where Command Expected Error\n");

B4-11

M: DTRglB.AK5/WP4

calib.c DTW-8944-91003

/, */
void dt set wait(unsigned char bytecode)

/* */

/* Part of the handshaking with the Data Translation board, this */

/* routine waits until a particular byte pattern is set in the DT- */

/* 2801's status register. */

/* */

**

char ready, i, idle;

int timeout;

ready = 0;

timeout = -32767;

while (ready == 0){

idle = 0;

while (idle <= i00) ++idle:

i = inportb(dt_2801_status_register);

if ((i & 0x80) == 0x80) dt error check();

if ((i & bytecode) == bytecode)

ready = I;

else

(

++timeout;

if (timeout == 32767) (

printf("Device time-out on DT-2801 board,\n");

printf("during dt set wait.\n");

ready = I;

}

B4-12

M: DTRglB.AE5/WP4

-- calib.c DTW-8944-91003

/* .

void dt_set_wait no error(unsigned char bytecode)

/* .

/* Same as dt_set_wait except this routine does not check for errors *

/* from the DT-2801 board */

/* */
**

char ready = 0, i, idle;

int timeout;

timeout = -32767;

while (ready == 0) {

idle = 0;

while (idle <= i00) ++idle;

i = inportb(dt_2801_status_register);

if ((i & bytecode) == bytecode)

ready = i;

else

{

++timeout;

if (timeout == 32767){

printf("Device time-out on DT-2801 board,\n");

printf("during dt set wait.\n");

ready = i;

)

B4-13

H:DTRglB.AE5/WP4

-- calib.c DTW-8944-91003

**
/* */
void dt clear wait(unsigned char bytecode)

/* Part of the handshaking with the Data Translation board, this */

/* routine waits until a particular byte pattern is cleared in the */

/* DT-2801's status register. */

!. */

char ready, i, idle;

int timeout;

ready = 0;

timeout = -32767;

while (ready == 0){

idle = 0;

while (idle <= i00) ++idle;

i = inportb(dt_2801_status_register) ;

if ((i & 0x80) == 0xS0) dt error check();

if ((i & bytecode) == 0)

ready = i;

else

(
++timeout;

if (timeout == 32767) {

printf("Device time-out on DT-2801 board, ln");

printf("during dt_clear_wait.kn");

ready = I;

)

B4-14

M :DTRglB.AE5/W?4

- calib.c DTW-8944-91003

/. */
void dt 2801 init()

/* This routine initializes the Data Translation board. It first */

/* resets the board, then reads its identity and prints out the board */

/* type. Then it executes the boards self-test, and sets both */

/* digital ports for output. */

/. */

**

unsigned char status, test_val, id, revno;

int i;

status = inportb(dt_2801 status_register) ;

if ((status & 0x70) != 0) (

printf ("Illegal status register value\n") ;

exit(l);

}

outportb(dt 2801_command_register, STOP);

for (i = 0; i < I00; ++i) {}

status = inportb(dt_2801 data_register);

dt set wait no error(READY);

/* Stops execution of any */

/* existing commands. */

/* Dummy read to clear */

/* registers. */

outportb(dt_2801_command_register,

dt set wait no error(DOR);

status = inportb(dt_2801_data_register);

dt set wait(READY);

id = status & 0xF0;

revno = status & 0x0F;

switch(id) {

case 0x00

case 0xl0

case 0x20

case 0x30

case 0x50

case 0x80

case 0x90

RESET);/* Reset board.

/* Read board ID

,/

./

/* Decode board ID number */

: printf ("DT-2801 board,") ;

break;

: printf("DT-2805 board,") ;

break ;

: printf("DT-2808 board,") ;

break;

: printf("DT-2808 board, with extender,

break;

: printf("DT-2801-A board,") ;

break;

: printf("DT-2801/5716 board,") ;

break;

: printf("DT-2805/5716 board,") ;

") ;

B4-15

M:DTR91B. AK$/_4

-- call b.c DTW-8944-91003

break;

case 0xA0: printf("DT-2818 board,");

}

/*printf(" firmware revision %2d.\n", revno) ;*/

outportb(dt_2801_command_register, TEST); /* Self test routine. */

for (i = I; i < 256; ++i) { /* Board should output */

dt set wait(DOR); /* sequential values. */

test_val = inportb(dt_2801_data_register);

status = inportb(dt_2801_status_register);

if ((test_val != i) II ((status & 0x80) != 0)) (

printf("DT-2801 Failure in TEST Routine\n");

exit(l);

}

/* Stop self-test.

}
dt set wait(DOR) ;

test_val = inportb(dt_2801_data_register);

status = inportb(dt_2801_status_register);

if ((test_val != 0) II ((status & 0x80) != 0)) {

printf("DT-2801 Failure in TEST Routine\n");

exit(l);

)

outportb(dt_2801_command_register, STOP); */

for (i = 0; i < 100; ++i) (}

status = inportb(dt_2801_data_register);

dt set wait no error(READY);

outportb(dt_2801_command_register, RESET); /* Reset board. */

dt set wait no error(DOR);

status = inportb(dt_2801_data_register);

dt set wait(READY);

outportb(dt_2801_command_register, SET__DIGITAL_OUTPUT); /* Set up */

dt_clear_wait(DIF); /* both digital ports for */

outportb(dt_2801_data_register, BOTH); /* output. */

dt clear wait (DIF) ;

dt set wait (READY) ;

B4-16

M: DTRglB.AES/WP4

- calib.c DTW-8944-91003

**
/, */
void write_digital(unsigned char byte_select, unsigned char out__byte)

/* */
/* This I/O routine writes the byte c_t__byte to the DT-2801 parallel */

/* port selected by byte_select. The value of byte_select can be 1 */

/* or 0 since the DT-2801 has only 2 ports. */

/. */

(

int i ;

outportb (dt_280 l_command_register, WRITE D IG_IMM) ;

dt clear wait (DIF) ;

outportb (dt_2801_data_register, byte_select) ;

dt clear wait(DIF) ;

outportb(dt_2801_data_register, out byte) ;

dt clear wait (DIF) ;

dt set wait (READY) ;

/* */

void write to YTF(unsigned int value)

/* */

/* This I/O routine writes the integer value to the YIG-tuned */

/* filter's control port. */

t* */

unsigned char a;

value += YTFTWEAK; /* Add filter offset value (YTFTWEAK) to */

YTFLSB = value; /* input value and store resulting YTF */

wrlte_digital(0, ~YTFLSB); /* code in global variables */

PORT1 = PORT1 & 0xFS; /* Note: port writes are complemented */

wrlte_digital(l, PORT1); /* due to logical inversion in */

PORT1 = PORT1 & 0xF7; /* electronics. Write LSB first. */

wrlte_digital(l, PORT1);

PORT1 = (PORT1 I 0x08); /* Toggle CLOCK bit in control register. */

write_digital(l, PORT1);

UPPERS = ((value >> 8) & 0x0F) I (UPPERS & 0xF0);

wrlte_digital(0, ~UPPERS); /* Compute and write combination of */

PORT1 = (PORT1 & 0xF8) t 0x02; /* upper nybbles. */

wrlte_digital(l, PORT1);

PORT1 = PORT1 & 0xF7;

wrlte_digital(l, PORT1); /* Toggle CLOCK to latch values in */

PORT1 = (PORT1 J 0x08); /* signal generator registers. */

write_digital(l, PORT1);

B4-17

M: DTRglB,AKS/WP4

- calib.c DTW-8944-91003

**/

l* "1
void write to YTO(unsigned int value)

l* *l
/* This I/O routine writes the integer value to the YIG-tun_d */

/* oscillator's control port. */

/* */

**

YTOLSB = value; /* Store value in global variable. */

write_digital(0, ~YTOLSB);

PORT1 = (PORT1 & 0xF8) l 0x01;

write__digital(1, PORT1); /* Clock value into signal generator */

PORT1 = PORT1 & 0xF7; /* registers. */

wrzte_digital(l, PORT1);

PORT1 = (PORT1 1 0x08);

wrzte_digital(l, PORT1);

UPPERS = ((value >> 4) & 0xF0)

wrlte_digital(0, ~UPPERS);

PORT1 = (PORT1 & 0xF8) l 0x02;

write_digital(l, PORT1);

PORT1 = PORT1 & 0xF7;

wrlte_digital(l, PORT1);

PORT1 = (PORT1 1 0x08);

write_digital(l, PORT1);

I (UPPERS & 0x0F);

/* Calculate and write combination */

/* of upper nybbles. */

B4-18

H: DTRglB .AE5/WP4

calib.c DTW-8944-91003

./
/,
void write to VCO(unsigned int value) */
/* ./
/* Similar to write to YTF, this routine programs the signal

/* generator's voltage-controlled oscillator. */
*/

/*

VCOMSB = (value >> 4) & 0xF0;

write_digital(0, ~VCOMSB);

PORT1 = (PORT1 & 0xF8) 1 0x05;

write_digital(l, PORT1);

PORT1 = PORT1 & 0xFT;

write_digital(l, PORT1);

PORT1 = (PORT1 1 0x08);

write_digital(l, POKTI) ;

VCOLSB = value;

write_digital(0, ~VCOLSB);

PORT1 = (PORT1 & 0xFB) _ 0x04;

wrlte_digital(l, PORTI);

PORT1 = PORT1 & 0xF7;

write_digital(l, PORT1};

PORT1 = (PORT1 1 0x08);

write_digital(l, PORT1);

B4-19

M: DTRglB. AE5/_P4

- calib.c DTW-8944-91003

/* *

void write_switch(unsigned char value)

/* ,

/* Similar to write to YTF, this routine programs the signal *

/* generator's internal selector switch. *

/* .

CONTROL = value;

write_digital(0, ~CONTROL);

PORT1 = (PORT1 & 0xF8) i 0x03;

write_digital(l, PORT1);

PORT1 = PORT1 & 0xF7;

write_digital(l, PORT1) ;

PORT1 = (PORT1 i 0x08);

write_digital(l, PORT1) ;

B4-20

M:DTRglB.AKS/WP4

-- calib.c DTW-8944-91003

**
/* ./
void to_frequency(double frequency)

/* ./
/* This routine uses write to YTF, write to YTO, wr_te to VCO, and */

/* write_switch to command the signal generator to the specified */

/* frequency. To keep the filter aligned with the oscillator */

/* frequencies, the global array cal store[] is referenced. */

/* cal_store[] contains a look-up table generated from an alignment */

/* routine which gives the oscillator code which lines up with a */

/* given filter code value. ,/

/* ,/
**

int i;

unsigned int YTF_code, YTO_code, VCO_code;

unsigned char CONTROL_code;

double temp, templ;

static double YTF_freq[6] = {i.0, 2.691, 4.394, 6.098, 7.798, 8.0};

static double YTF_vaI[6] = {0.0, 994.0, 1989.0, 2983.0, 3977.0,

4095.0};

/* The arrays YTF_freq[] and YTF_vaI[] hold the frequency */

/* calibration of the YIG-tuned filter. */

if ((frequency <= 8.0) && (frequency >= 2.0)){

CONTROL_code = 0x02; /* Select YTO for 2<f<8GHz */

write_switch(CONTROL_code);

for (i = 0; i < 6; ++i) {

temp = frequency - YTF_freq[i];

if (temp <= 0) break;

}

/* Calculate digital code for YIG-tuned filter. */

temp = YTF_val[i-l] + (frequency - YTF_freq[i-l])

/ (YTF_freq[i] - YTF_freq[i-l])

* (YTF_val[i] - YTF_val[i-l]);

templ= modf(temp, &temp);

if (templ> 0.5) temp = temp + 1.0;

YTF_code = (unsigned int) temp;

write to YTF(YTF_code);

write to YTO(calstore[YTF_code]); /* Get YTO code from

/* look-up table.

}

./

./

B4-21

M: DTRglB.AK5/WP4

_ calib.c DTW-8944-91003

else if ((frequency < 2.0) && (frequency >= 1.0)) (

CONTROL code = 0x00; /* Select VCO for l<f<2GHz

write_switch (CONTROL_code) ;

temp = YTF val[0] + (frequency - YTF_freq[0])

7 (YTF_freq[l] - YTF_freq[0])

* (YTF_vaI[I] - YTF_vaI[0]) ;

templ= modf(temp, &temp) ;

if (templ> 0.5) temp = temp + 1.0;

YTF code = (unsigned int) temp;

write to YTF(YTF_code);

write to VCO(calstore[YTF_code]) ;

./

B4-22

M: DTRglB.AE5/WP4

-- calib.c DTW-8944-91003

/* */
void set_gains_int(char gl, char g2, char intl, char bias)

/* */
/* This routine sets the gains of the various programmable ampli- */

/* fiers in the network analyzer's post-detection electronics. It */

/* also sets the integration time and the bias current. */

/* Communication with the post-detection electronics is through */

/* the PIO-12 24-bit parallel interface card. */

/* ./
**

{

asm

asm

asm

asm

asm

outportb(piol2_pb, 0x14); /* Select gainl/gain2/bias register */

jmp $+2 /* I/O delay to for PIO-12 card */

outportb(piol2_pa,

~((0x01 << (gl-l)) [(0x08 << (g2-1)) l

((bias << 7) & 0xS0)));

jmp $+2

outportb(piol2_pc, 0x00);

jmp $+2

outportb(piol2_pc, 0x80); /* Clock value into registers */

jmp $+2

outportb(piol2_pc, 0x00);

jmp $+2

outportb(piol2_pb, 0x15); /* Select integration time register */

asm jmp $+2

outportb(piol2_pa, ~(0x01 << (intl-l)));

asm jmp $+2

outportb(piol2_pc, 0x00);

asm jmp $+2

outportb(piol2 pc, 0x80); /* Clock value into register */

asm jmp $+2

outportb(piol2_pc, 0x00);

asm jmp $+2

}

B4-23
M: DTR91B.A_S/WP4

caiib.c DTW-8944-91003

./
/,

void data_in() ,/
/*
/* Set PIO-12 board up for input on one of its 8-bit ports. Keep */

/* other 2 ports in output mode for control. */

/. */
**

{
char mode;

asm

asm

asm

outportb(piol2_pa, 0x00);

imp $+2

outportb(piol2_pb, 0x00) ;

imp $+2

outportb(piol2 pc, 0x00);

imp $+2

mode = pa is input _ Pb is output I pclo is output

I pchi is output I pa pchi is mode_0 L pb_pclo is mode 0

I mode set active;

mode set(mode);

}

*/
/*

void data out()
-- ,/

/*
/* Set PIO-12 board up for output on all of its 8-bit ports. */

*/
/*

{
char mode;

mode = pa is output I pb_is output I pclo is output

I pchi is output i pa pchi is mode_0 I pb_pclo is mode_0

I mode set active;

mode set(mode);

B4-24

M:DTRglB.AKS/W?4

calib.c DTW-8944-91003

./
/.
void read ads(char s channel, char e channel, unsigned int *out_vector)

/*
/* Uses the 16-bit A/D converter in the post-detection electronics */

/* to read the analog outputs of the various synchronous detectors. */

/* s channel is first channel to be read, e channel is last. Array */

/* of converted values is returned in out vector.
-- ,/

/*

char bytel[2], i;

unsigned int *temp;

temp = (unsigned int *) bytel;

outportb(piol2__pc, 0xC0);

delay(2);

ouCportb(piol2_pc, 0xCS); /* Enable A/D conversion */

wait microsec(100);

for (i = s channel; i <= e channel; ++i) {

outportb(piol2__b, 0x08 I (i & 0x07)); /* Select analog */

/* channel */
asm jmp $+2;

outportb(piol2 pc, 0x88); /* Clock channel select into */

asm jmp $+2; /* register. */

outportb(piol2_pc, 0xC8);

wait microsec(10); /* S/H settling time */

outportb(piol2 pc, 0xE8); /* Start A/D conversion */

asm jmp $+2;

outportb(piol2_pc, 0xC8);

wait microsec(100);

outportb(piol2 pb, 0x18);

asm jmp $+2;

bytel[0] = inportb(piol2__pa); /* read low byte */

asm jmp $+2;

outportb(piol2_pb, 0x19);

asm imp $+2;

bytel[l] = inportb(piol2__pa); /* read high byte */

out vector[i-s channel] = ~(*temp); /* A/D output is */

-- /* complementary offset binary. Therefore invert */

/* results. */

}
outportb(piol2_pc, 0xC0);

B4-25

M:DTR91B.AES/NP4

- caldefs.h DTW-8944-91003

#include <alloc.h>

#include <conio.h>

#include <dos.h>

#include <fcntl.h>

#include <graphics.h>

#include <io.h>

#include <math.h>

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <sys\stat.h>

#include <time.h>

#define sqr(x) ((x)*(x))

#define piol2_pa 0x200

#define piol2_pb 0x201

#define piol2_pc 0x202

#define piol2_control 0x203

#define pclo is input 0x01

#define pclo is output 0x00

#define pb is input 0x02

#define pb is output 0x00

#define pb_pclo is mode_0 0x00

#define pb__pclo is mode_l 0x04

#define pchi is input 0x08

#define pchi is output 0x00

#define pa is input 0x10

#define pa is output 0x00

#define pa_pchi is mode_0 0x00

#define pa__pchi is mode_l 0x20

#define pa_pchi is mode 2 0x40

#define set reset mode 0x00

#define mode set active 0xS0

#define pi 3.14159265358979324

#define twopi 6.28318530717958648

#define v 1 299792458.0

#define CW 0

#define SWEEP 1

#define CW PULSE 2

#define SWEEP PULSE 3

#define dt_2801_status_register 0x02ED

#define dt_2801 command_register 0x02ED

#define dt_2801_data_register 0x02EC

#define STOP 0x0F

#define RESET 0x00

B5-1

M :DTRglB.AES/WP4

caldefs.h DTW-8944-91003

#define CLEAR ERROR 0x01

#define SET INT CLK 0x03

#define SET DIGITAL OUTPUT 0x05

#define TEST 0x0B

#define SET A D PARAMS 0x0D

#define WRITE DIG IMM 0x07

#define READ ERR 0x02

#define BOTH 0x02

#define DOR 0x01

#define DIF 0x02

#define READY 0x04

#define COMMAND 0x08

#define CERROR 0x80

#define Nslides 20

#define Nfreqs 51

#define Ndiodes 5

struct sweeper_status {

int mode;

double frequency, freq_step, start_freq, stop_freq, sweep_time;

};

unsigned char YTOLSB, YTFLSB, UPPERS, CONTROL, PORT1, VCOLSB, VCOMSB;

int YTFTWEAK = 0, MOD ON = 0, ODD NUM = 0;

double FOFFSET = 0.0, DELTAF = 0.0;

int *calstore;

void wait microsec(int argl) ;

vold interrupt (*oldfunc) () ; ;

void mode set(char mode);

void nrerror(char error text[]);

void dt_error_check();

vold dt_set_wait(unsigned char bytecode);

void dt_set_wait no error(unsigned char bytecode);

void dt_clear_wait(unsigned char bytecode);

void dt 2801 init();

M ;DTR91B.AE5/WP4

B5-2

caldefs.h DTW-8944-91003

void write_digital(unsigned char byte_select, unsigned char out_byte);

void write to YTF(unsigned int value);

void write to YTO(unsigned int value);

void write to VCO(unsigned int value);

void write switch(unsigned char value);

void to frequency(double frequency);

void set_gains_int(char gl, char g2, char intl, char bias);

void data in();

void data out();

void read_ads(char s channel, char e_channel, unsigned int *out_vector);

B5-3

M :DTR91B.AE5tWP4

measure.c DTW-8944-91003

#include "measure. h"

**
/* */
main()

/* */
/* This program performs a single measurement sweep using the */

/* frequency range and calibration data stored by the program */

/* "calib.exe." All calibration and measurement calculations, as */

/* well as models for the calibration standards, are included here. */

/* *!

**

double *b, *w, chisq, **u, **u_out, **v, *xl, *x2, *y, *diode_volts,

frequency, *sig, atten, center__mag, zeta, AA, BB, CC, DD,

EE, FF, GG, HH, II, ea, eb, ec, rho, temp, alpha, beta,

gammal, delta, epsilon;

freq_node *bl, *al; /* The data structures freq_node and cal_node, */

cal_node *b2, *a2; /* defined in measure.h, hold all the required */

/* calibration constants for the analyzer at a */

/* given frequency. */

int i, j, k, Nsamp, diodes[3], freq_loop, gain_val, nfreq;

complex gamma, gamma2;

double *mean, *standard_deviation, *sum_x, *sum x 2, *noise, *offset;

double **working_matrix, **working_vector, P3, P4, P5, P6, freql,

freq2, dfreq;

FILE *streamer, *streamerl;

char dummy, instring[20], instringl[20];

unsigned int out vector[5];

calstore = (int*) malloc(4096*sizeof(int)) ;

streamer = fopen("sweepcal.dat","rt") ;

for (j = 0; j < 4096; ++9)

fscanf(streamer, " %X", &(calstore[j]));

fclose (streamer) ;

/* Allocate memory */

bl = NULL;

al = bl = add_freq_node(bl);

get_complex_mere () ;

u -- dmatrix(l,Nslides, I, 9) ;

u_out = dmatrix(l,Nslides,l, 9) ;

M :DTR91B.AES/WP4

B6-1

measure.c DTW-8944-91003

v = dmatrix(l, 9, i, 9) ;

b = vector(l,Nslides) ;

w = vector(l,9) ;

xl = vector(l,9) ;

noise = vector(l,5) ;

offset = vector(l,5) ;

mean = vector(l,5);

standard deviation = vector(l,5) ;

sum x = vector(l,5) ;

sum x 2 = vector(l,5);

sig = vector(l, 40) ;

diode volts = vector(0,4);

/* Check for existence of measure.cfg. If it exists, read default */

/* calibration file stored from previous run. */

streamer = fopen("measure.cfg","rt") ;

if (streamer) {

fscanf(streamer," %s", instring) ;

printf("\n\nCalibration file name? (%s) ",instring);

dummy = getch() ;

/* If input is not a <CR>, read new cal file name. */

if (dummy != 13) {

ungetch(dununy);

scanf("%s",instringl) ;

strcpy(instringl,instring);

}

}

else{ /* If measure.cfg does not exist, read new cal file name.*/

printf("\n\nCalibration file name? ");

scanf ("%s", instring) ;

)

fclose (streamer) ;

/* Write cal file name for use next time. */

streamer = fopen("measure.cfg","wt") ;

fprintf(streamer, "%s\n", instring);

fclose(streamer);

streamer = fopen(instring,"rt");

if (!streamer){

printf("Calibration file not found.");

B6-2
M :DTRgIB.AES/WP4

_ measure.c DTW-8944-91003

printf("Exiting to system...") ;

exit (1) ;

/* Repeat above procedure for output filename. */

streamerl = fopen("measurel.cfg","rt") ;

if (streamerl) {

fscanf(streamerl," %s", instring) ;

printf("\n\nOutput file name? (%s) ",instring) ;

dummy = getch() ;

if (dummy != 13) {

ungetch (dummy) ;

scanf("%s",instringl) ;

strcpy (instringl, instring) ;

}

}

else{

printf("\n\nOutput file name? ");

scanf ("%s", instring) ;

}

fclose(streamerl) ;

streamerl = fopen("measurel.cfg","wt") ;

fprintf(streamerl, "%s\n", instring);

fclose (streamerl) ;

streamerl = fopen(instring,"wt") ;

/* Read calibration file. */

fscanf(streamer, " %d", &gain_val);

fscanf(streamer, " %if", &freql);

fscanf(streamer, " %if", &freq2);

fscanf(streamer, " %d", &nfreq);

dt 2801 init(); /* Initialized DT-2801 board. */

YTFTWEAK = 0x0000;

to_frequency(freql);

data out();

switch(gain_val) { /* Set system gain per value stored in

/* cal file.

case 1 : set_gains_int (l, l, 3, 0) ;

break;

case 2 : set_gains_int (2,1, 3, 0) ;

break;

/* Go to first frequency. */

/* Set PIO-12 interface for output to PDEU */

*/
*/

B6-3
M:DTR91B.AES/WP4

measure.c DTW-8944-91003

case 3 : set_gains_int (3,1, 3, 0) ;

break;

case 4 : set_gains_int(2,2,3,0) ;

break;

case 5 : set_gains_int (3, 2, 3, 0) ;

break;

case 6 : set_gains_int (2, 3, 3, 0) ;

break;

case 7 : set gains_int (3, 3, 3, 0) ;

break;

}

data_in(); /* Set PIO-12 for input from PDEU */

outportb (piol2_pc, 0xC0) ;

delay(50); /* Do one A/D conversion to clear system */

read ads (3, 7, out vector) ;

/* Continue reading cal file. */

for (i = I; i <= Ndiodes; ++i) fscanf(streamer, " %if", & (offset [i])) ;

for (i -- i; i <= Ndiodes; ++i) fscanf(streamer, " %if", &(noise[i]));

/* Begin measurement sweep, reading values from cal file as needed. */

fflush(stdin);

printf("\n\nPlace device under test at reference plane.\n") ;

printf(" Press RETURN when ready. .7");

scanf("%c", &dummy);

clrscr();

for (freq_loop = 0; freq__loop < nfreq; ++freq loop) {

if (freq_loop != 0) bl = add freq_node(al) ;

/* Data structure for cal and measurement data is a linked */

/* list of records of type freq_node. The routine */

/* add_freq node adds to this list. */

bl->frequency = freql + ((double) freq_loop) /

((double) (nfreq-l))

* (freq2 - freql);

to_frequency(bl->frequency);

/* Calculate frequency and indicate it on the CRT as the */

/* sweep progresses. */

B6-4

M:DTRglB.AES,/WP4

- measure.c DTW-8944-91003

gotoxy (4, i0) ;

printf("Frequency: %5.31f GHz", bl->frequency) ;

sleep (2) ;

/* Read sliding short data from file. */

for (k = i; k <= Nslides; ++k) {

b2 = add cal node(bl);

for (i = 0; i < Ndiodes; ++i)

fscanf(streamer," %if",&(b2->diode volts[i]));

permute(b2->diode_volts, bl->frequency);

P4 = b2->diode volts[0];

P3 = b2->diode volts[l];

P5 = b2->diode volts[2];

/* Fill 5X5 array for 5-port to 4-port conversion. */

u[k] [i] = P3*P3/P4/P4;

u[k] [2] = P3*P5/P4/P4;

u[k] [3] = P5*P5/P4/P4;

u[k] [4] = P3/P4;

u[k] [5] = P5/P4;

b[k] = -i.0;

/* Read Short/Open/Load data from file */

for (i = 0; i < Ndiodes; ++i)

fscanf(streamer, " %if", &(bl->zl volts[i]));

permute(bl->zl_volts, bl->frequency);

/* The routine permute() rearranges the array of */

/* measured voltages as a function of frequency */

/* such that the three voltages to be used at a */

/* given frequency are in array elements 0,1, */

/* and 2. ./

for (i = 0; i < Ndiodes; ++i)

fscanf(streamer, " %if", &(bl->z2 volts[i])) ;

permute(bl->z2_volts, bl->frequency) ;

for (i = 0; i < Ndiodes; ++i)

fscanf(streamer, " %if", &(bl->z3 volts[i])) ;

permute(bl->z3_volts, bl->frequency) ;

B6-5
M:DTR91B.AE5/WP4

- measure.c DTW-8944-91003

/* Read measured data from network analyzer. */

read_ads(3,7,out_vector);

for (i = 0; i < Ndiodes; ++i)

bl->meas volts[i] =

(double)out_vector[i]/65535.0*10.0

- offset[i];

permute(bl->meas_volts, bl->frequency);

/* Perform 5-port to 4-port reduction as described in

/* text of final report. First step is to solve 5X5

/* matrix by singular value decomposition to yield

/* estimates of coefficients of best-fit ellipse.

*/
./
./
./

svdcmp(u,Nslides,5,w,v);

temp = 0.0;

for (i = i; i <= 5; ++i)

if (fabs(w[i]) > temp) temp = w[i];

for (i = i; i <= 5; ++i)

if (fabs(w[i]) < temp/10000.0) w[i] = 0.0;

svbksb (u, w, v, Nslides, 5,b, xl) ;

AA = xl[l];

BB = xi[2]/2.0;

CC = xl [3] ;

DD = xi[4]/2.0;

EE = xi[5]/2.0;

/* AA...EE are coefficients of best-fit ellipse. Use these */

/* to find calibration constants as described in text of */

/* final report. ,/

alpha = (BB*DD-AA*EE)/(AA*CC-BB*BB);

beta = (DD*EE-BB)/(AA*CC-BB*BB);

gammal = (BB*EE-DD*CC)/(AA*CC-BB*BB);

temp = (AA-DD*DD)/(AA*CC-BB*BB);

delta = -sqrt(temp);

temp = (CC-EE*EE)/(AA*CC-BB*BB);

epsilon = -sqrt(temp);

ea = (alpha-delta)*(gammal+epsilon)/2.0/(alpha+delta);

eb = (gammal-epsilon)/2.0;

ec = (beta-epsilon*delta)/(alpha+delta);

zeta = (gammal+epsilon)/(alpha+delta);

86-6
M:DTR91B.AES/WP4

measure.c DTW-8944-91003

bl->center_r[2] = bl->center mag[2] =

bl->center_i[2] = bl->theta[2] = 0.0;

bl->scale[2] = zeta;

sqrt (ec) ;

/* Perform 4-port (Short/Open/Load) calibration. */

four port_cal(al);

bl = al;

clrscr();

/* Find reflection coefficients from measured data. */

for (freq._loop = 0; freq loop < nfreq; ++freq_loop) {

find S(bl) ;

/* Write measured data to output file. */

printf ("%9.51f %9.51f %9.51f\n",

bl->frequency, c_abs(&(bl->S[0])),

atan2(bl->S[0] .y, bl->S[0] .x)/pi*180.0) ;

fprint f (streamerl, "%9.51f %9.51f %9.51f\n",

bl->frequency, c_abs(&(bl->S[0])),

atan2(bl->S[0] .y, bl->S[0] .x) /pi*180.0) ;

bl = bl->next_freq_node;

/* Close files and free memory. */

fclose(streamer);

fclose(streamerl);

free_vector(diode_volts,0,4);

free vector(sig, l,40);

free vector(sum x 2,1,5);

free_vector(sum_x,l,5);

free vector(standard deviation, l,5);

free vector (mean, l,5) ;

free vector(offset, 1,5) ;

free vector(noise, l,5);

free vector(xl, l, 9) ;

free vector (w, l, 9) ;

free vector(b,l,Nslides);

free dmatrix(v, l, 9,1, 9) ;

B6-7

M :DTR91B.AES/WP4

- measu re.c DTW-8944-91003

free_dmatrix (u_out, i, Nslides, i, 9) ;

free dmatrix(u,l,Nslides, I, 9) ;

f ree_complex_mem () ;

/* End of main routine */

fprintf(stderr,"Numerical Recipes

fprintf(stderr,"%s\n" error text);f

fprintf (stderr,"...now exiting to

exit (1) ;

run-time error...\n") ;

system... \n") ;

B6-8

M:DTR91B.AES/WP4

measure.c DTW-8944-91003

complex_pointer

= complex__base

= farmalloc(500 * sizeof(complex));

if (complex_base == NULL){

printf("Error in get_complex__mem -- not enough memory\n");

exit(l);

}

c_mat_pointer

= c mat base

= farmalloc(500 * sizeof(complex_mat));

if (c_mat_base == NULL){

printf("Error in get_complex_mem -- not enough memory\n");

exit(l);

}

--complex_pointer;

--complex_base;

--c_mat_pointer;

--c_mat__base;

M:DTRgl B.AES/_4

B6-9

- measure.c DTW-8944-91003

complex *k;

k = next_complex_value();

k->x = x;

k->y = y;

return(k);

I* *I

complex *su(complex *a, complex *b)

/* */
/* Add two complex numbers. */

/* */
**
{

complex *k;

k = next_complex value();

k->x = a->x + b->x;

k->y = a->y + b->y;

return(k);

B6-10
M :DTRg1B.AES/WP4

- measure.c DTW-8944-91003

k = next_complex_value();

k->x = a->x - b->x;

k->y = a->y - b->y;

return(k);

/* */
complex *pr(complex *a, complex *b)

/* ./
/* Multiply two complex numbers. ,/

/* */
**
{

complex *k;

k = next_complex_value () ;

k->x = a->x * b->x - a->y * b->y;

k->y = a->x * b->y + a->y * b->x;

return (k) ;

B6-11
M :DTR91B.AES/WP4

measure.c DTW-8944-91003

k = next_complex_value();

if (fabs(b->x) >= fabs(b->y))

r=b->y/b->x;

den=b->x+r*b->y;

k->x=(a->x+r*a->y)/den;

k->y=(a->y-r*a->x)/den;

} else {

r=b->x/b->y;

den=b->y+r*b->x;

k->x=(a->x*r+a->y)/den;

k->y=(a->y*r-a->x)/den;

}

return k;

M:DTRg1B.AESA_tP4

B6-12

-- measure.c DTW-8944-91003

/* ./
double c_abs(complex *a)

/* */
/* Return absolute value of a complex number. */

/* *t
**
{

double x,y, ans,temp;

x=fabs (a->x) ;

y=fabs (a->y) ;

if (x == 0.0)

ans=y;

else if (y == 0.0)

ans=x;

else if (x > y) {

temp=y/x;

ans=x*sqrt(l.O+temp*temp);

} else {

temp=x/y;

ans=y*sqrt(l.O+temp*temp);

}

return ans;

B6-13
M :DTR91B.AE5/WP4

measure.c DTW-8944-91003

C = next_complex_value () ;

if ((a->x == 0.0) && (a->y == 0.0)) {

c->x=O. 0 ;

c->y=O. 0 ;

return c ;

} else {

x=fabs (a->x) ;

y=fabs (a->y) ;

if (x >= y) (

r=y/x;

w=sqrt (x) *sqrt (0.5* (I. O+sqrt (i. O+r*r))) ;

} else {

r=x/y;

w=sqrt (y)*sqrt (0.5*(r+sqrt (l.O+r*r))) ;

)

if (a->x >= 0.0) {

c->x=w;

c->y=a->y/ (2. O'w) ;

} else {

c->y=(a->y >= O) ? w : -w;

c->x=a->y/ (2. O*c->y) ;

}

return C ;

M:DTR91B.AE5P_/P4

B6-14

-- measure.c DTW-8944-91003

/* .

complex *rc_mul(double x, complex *a)

/* .

/* Multiply a real and a complex number. *

/* */
**
(

complex *c;

c = next_complex_value();

c->x=x*a->x;

c->y=x*a->y;

return c;

temp = exp(z->x) ;

c = co(temp*cos(z->y) , temp*sin(z->y)) ;

return c;

B6-15
M :DTR91B.AESIWP4

measure.c DTW-8944-91003

/* ./
cal_node *add_cal_node(freq_node *a)

/* */

/* Add one node to the linked list of calibration data records. */

/* */
**
{

cal_node *x, *y;

x = a->first cal node;

if (x == NULL){

x = a->first_cal_node = farmalloc(cal_size);

if (!x) nrerror("Memory allocation error.\n");

}

else{

while (x->next_cal_node != NULL) x = x->next_cal_node;

x = x->next_cal_node = farmalloc(cal_size);

if (!x) nrerror("Memory allocation error.\n");

}

x->next cal node = NULL;

return (x) ;

}

M:DTR91B.AE5/WP4

B6-16

- measure.c DTW-8944-91003

**
/. ./
freq_node *add_freq_node(frec[_node *a)

/* ./

/* Add one node to the linked list of calibration and measurement */

/* data records. */

/* -1
**
{

freq_node *x, *y;

unsigned long pagel, page2;

if (a == NULL){

x = farmalloc(freq_size) ;

if (!x) nrerror("Memory allocation error.\n");

}

else{

x = a;

while (x->next_freq_node != NULL) x = x->next_freq_node;

y = farmalloc(freq_size);

if (!y) nrerror("Memory allocation error.kn");

x = x->next_freq_node = y;

}

x->diode_volts = farmalloc(number of diodes * sizeof(double));

if (!(x->diode_volts)) nrerror("Memory allocation error.\n");

x->next_freq_node = NULL;

x->first cal node = NULL;

x->center_r[l] = x->center_i[l] = 0.0;

x->scale[l] = 1.0;

return(x);

B6-17
M :DTR91 B.AE5,tWP4

measure.c DTW-8944-91003

/. */
int gaussjl(double a[7] [7], int n, double b[7] [2], int m)

/* */
I* Gauss-Jordan matrix solver. Matrix to be solved is in a, right- *I

/* hand vector is in b. Details of operation are described in */

/* Numerical Recipes */

/* */
**
{

double big, big_one, dum, pivinv;

int i, icol, irow, j, k, i, ll;

int indxc[7], indxr[7], ipiv[7], singular;

singular = 0;

for (j = i; j <= n; ++j) {

ipiv[j] = 0;

}

for (i = i; i <= n; ++i) {

big = 0.0;

for (j = i; j <= n; ++j) {

if (ipiv[j] != i) {

for (k = I; k <= n; ++k) {

if (ipiv[k] == 0) {

if (fabs(a[j] [k]) >= big){

big = fabs(a[j] [k]);

irow = j;

icol = k;

}

}

else if (ipiv[k] > i) {

singular = I;

goto quit;

}
}

)

}

if (i == I) big_one = big;

ipiv[icol] = ipiv[icol]+l;

if (irow != icol) {

for (i = i; 1 <= n; ++i) {

dum = a[irow] [i] ;

a[irow] [i] = a[icol] [I] ;

a[icol] [i] = dum;

M :DT R91 B.AESANP4

B6-18

- measure.c DTW-8944-91003

}

for (i = i; 1 <= m; ++i) {

dum = b[irow] [i] ;

b[irow] [i] = b[icol] [i] ;

b[icol] [i] = dum;

}
}

indxr[i] = irow;

indxc[i] = icol;

if (fabs(a[icol] [icol]) < ((le-lO)*big_one)) {

singular = I;

goto quit ;

)

pivinv = l.O/a[icol] [icol] ;

a[icol] [icol] = 1.0;

for (i = I; i <= n; ++i) {

a[icol] [i] = a[icol] [l]*pivinv;

)

for (i = i; 1 <= m; ++i) {

b[icol] [i] = b[icol] [l]*pivinv;

}

for (ii = I; ii <= n; ++ii){

if (ii != icol) [

dum = a[ll] [icol] ;

a[ll] [icol] = 0.0;

for (i = I; 1 <= n; ++i) {

a[ll] [I] = a[ll] [l]-a[icol] [l]*dum;

}

for (i = I; 1 <= m; ++i){

b[ll] [i] = b[ll] [l]-b[icol] [l]*dum;

}

}
}

}

for (i = n; 1 >= i; --i) {

if (indxr[l] != indxc[l]) {

for (k = I; k <= n; ++k) (

dum = a[k] [indxr[l]];

a[k] [indxr[l]] = a[k] [indxc[l]];

a[k] [indxc[l]] = dum;

}

}
}

quit: return(singular);

B6-19
M :DT R91B.AI::5/WP4

-- measure.c DTW-8944-91003

/* ,/
void find_w(freq_node *a, double diode_volts[number of diodes], complex *w,

int dsel)

/* ./
/* Finds complex ratio w using previously calculated calibration */

/* constants and trigonometry. ./

/* ./
**
{

int i, j, errorl;

double duml, dum2, dum3, rl, r2, r3, cos_theta, sin_theta,

x[2], errl, err2;

duml = diode volts[0];

dum2 = diode volts[l];

dum3 = diode volts[dsel];

rl = dum2/duml;

r2 = a->scale[dsel]*dum3/duml;

r3 = sqr(a->center_mag[dsel]);

cos_theta = (rl + r3 - r2)/(2*sqrt(rl)*sqrt(r3));

if (fabs(cos_theta) > 1.0) cos theta

= cos_theta/fabs (cos_theta) ;

sin_theta = -sqrt (l-sqr(cos_theta)) ;

*w = *co(sqrt (rl)*cos_theta, sqrt (rl)*sin_theta) ;

reset_complex_pointer();

B6-20
M :DTR91B.AE5ANP4

-_-- DTW-8944"_ I uu,.,

measure.c /
,/

/*****_********_**_***_**_************************************_******

*a, double matl[7] [7],

/* fill complex matrix(freq--n°de */void _ double vectl[7] [2]) ./
calibration" Note: ,/

/* Fills matrix for 4-port (Short/Open/Load)contained in this ,/

/* models for all calibration standards are */
/*
/, routine- Edit here to change modelS.

/*

complex gammal, gamma2, gamma3, zl;

double short length, cl;

marl(l] [3] -- 1.0;

marl(3] [3] = 1.0;

marl(5] [3] = 1.0;

matl[2] [4] = 1.0;

marl(4] [4] = 1.0;

matl[£] [4] = 1.0;

matl[2] [3] = 0.0;

matl[4] [3] = 0.0;

marl(6] [3] = 0.0;

marl(l] [4] = 0.0;

marl(3] [4] = 0.0;

matl[5] [4] = 0.0;

/, First cal standard is a delayed short circuit.

/* is recessed about 50 mils from reference plane. Effective

/, length given here was derived from model fitting using 8410

/, measurements- * /

gammal -- co(- sin(2*Pi* (a_>frequency) -- "

, Second standard is a 7mm open circuit- Its capacitance is */

, modeled as c =0"079 + 4e-5*f^2' with f in GHZ and c in pF. */

, (a_>frequency)) , [7 _z;

(_>frequency) __-_ * IE9 * cl * 0)) ;

cl = (0.079 + 4E/5(2 .a . , (a_>frequen_, ,,..0 * P_ ..__ co(l.0,u.u_J''

zl -- ,co(0,-l-U . co(l.0,0.0)),su_'

gamma 2 = ,qu (all (&z_,

Shorting plane */
*/

*/

B6-21

M -DT R91B,AEs/WP4

DTW-8944-91003
measure.c

/* Last standard is a matched load. Model used is DC value of */

/* resistance shunted with a capacitor, and a series inductor */

/* between this shunt pair and the reference plane. Model was */

/* derived by fitting to a large number of 8410 measurements. */

zl = *qu (co (0 .0, -49.64 / (2.0,pi*(a->frequency)*le-3 * 8.9454e-3)),

co(49.64, -I.0 / (2.0,pi*(a->frequency)*le-3 * 8.9454e-3)));

zl = *su(&zl, co(0.0, 2.0*pi*(a->frequency)* 1.9681e-3));

gamma3 = ,qu(di(&zl,co(50.0,0-0)),su(&zl'c°(50"0'0"0))) ;

gamma3 = *pr (&gamma3,

co (cos(2*pi*(a->frequency)*le9/v--l*2"0 * 3.4564e-2),

-sin(2*pi*(a->frequency)*leg/v--l*2"0 * 3.4564e-2))) ;

/* Fill matrix for determination of 4-port calibration constants */

/* as described in text. */

marl[l] [5] =

marl[2] [6] =

marl [2] [5] =

marl[l] [6] =

marl[3] [5] =

marl[4] [6] =

matl[4] [5] =

matl[3] [6] =

matl[5] [5] =

matl[6] [6] =

matl[6] [5] =

matl[5] [6] =

matl[l] [i] =

matl[2] [2] =

matl[l] [2] =

matl[2] [i] =

matl[3] [i] =

matl[4] [2] =

matl[3] [2] =

matl[4] [i] =

matl[5] [I] =

matl[6] [2] =

matl[5] [2] =

matl[6] [I] =

gamma I. x ;

gammal .x;

-gamma I. y;

gamma i. y;

gamma2, x;

gamma 2. x;

-gamma2. y ;

gamma2, y;

gamma 3. x;

gamma3, x;

-gamma 3. y;

gamma 3. y;

-(gammal.x*vectl[2] [i] - gammal.y*vectl[l] [I]) ;

matl[l] [i] ;

-(gammal.x*vectl[l] [i] + gammal.y*vectl[2] [I]) ;

-matl [i] [2] ;

-(gamma2.x*vectl[4] [i] - gamma2.y*vectl[3] [I]) ;

matl[3] [i] ;

-(gamma2.x*vectl[3] [I] + gamma2.y*vectl[4] [i]) ;

-matl[3] [2] ;

-(gamma3.x*vectl[6] [I] - gamma3.y*vectl[5] [i]) ;

marl[5] [I] ;

-(gamma3.x*vectl[5] [i] + gamma3.y*vectl[6] [I]) ;

-matl[5] [2] ;

reset_complex_pointer();

B6-22

M:DTR91B.AES_NP4

measure.c DTW-8944-91003

/. */
void fill_complex_vector(freq_node *a, double vectl[7] [2])

/. */

/* Fills right-hand vector used in solving for 4-port calibraticn */

/* constants. */

/. "1
**

int i, j;

complex w;

find_w(a, a->zl_volts, &w, 2);

vectl[2] [i] = w.x;

vectl[l] [i] = w.y;

find_w(a, a->z2_volts, &w, 2);

vectl[4] [i] = w.x;

vectl[3] [i] = w.y;

find_w(a, a->z3_volts, &w, 2);

vectl[6] [i] = w.x;

vectl[5] [i] = w.y;

B6-23

M :DTR91B.AE5/WP4

measure.c DTW-8944-91003

/* ,/
void four_port_cal(freq_node *root)

/* */

/* Solves for 4-port calibration constants. Fills a complex matrix */

/* with data from measurements of Short/Open/Load cal standards and */

/* models of same. Inverts matrix using Gauss-Jordan elimination */

/* to yield calibration constants. */

/* */
**

freq_node *a;

double (*vectl) [7] [2], (*matl) [7] [7];

int i, j, k;

char out line[30];

vectl = farcalloc(14,sizeof(double)) ;

matl = farcalloc(49,sizeof(double));

a = root;

while (a != NULL){

fill_complex_vector(a,*vectl);

fill_complex_matrix(a,*matl,*vectl);

gaussjl(*matl, 6,*vectl,l);

for (i = i; i <= 6; ++i)

a->bilin[0] [i] = (*vectl) [i] [i];

a = a->next_freq_node;

}

farfree (matl) ;

farfree (vectl) ;

M :DTR91B.AE5hNP4

B6-24

- measure.c DTW-8944-91003

/* */

void find_S(freq_node *a)

/* ,/

/* Finds reflection coefficient. Wirst finds complex ratio w, then */

/* performs bilinear transform to yield reflection coefficient as */

/* described in text. ,/

/* ,/

**

double templr, templi, temp2r, temp2i, temp3, (*matl) [7] [7],

(*vectl) [7] [2];

int i, j;

complex *rho[max_heads], a2 on al, temp_rootl, w,

temp_root2;

find_w(a, a->meas_volts, &w, 2) ;

templr = w.x - a->bilin[0] [4];

templi = w.y - a->bilin[0] [3];

temp2r = w.x * a->bilin[0] [2]

- w.y * a->bilin[0] [i];

temp2i = w.x * a->bilin[0] [i]

+ w.y * a->bilin[0] [2];

temp2r = a->bilin[0] [6] - temp2r;

temp2i = a->bilin[0] [5] - temp2i;

temp3 -- sqr(temp2r) + sqr(temp2i) ;

a->S[0] .x = (templr*temp2r + templi*temp2i)/temp3;

a->S[0] .y = (templi*temp2r - templr*temp2i)/temp3;

B6-25
M:OTR91B.AE5/WP4

- measum.c DTW-8944-91003

**
/* ,/
int permute(double x[number of diodes], double frequency)

* ,/

* Rearranges array x as a function of frequency such that the three */

* values to be used at a given frequency are in elements 0,i, and 2. */

* ,/

double temp;

if ((frequency >= 0.0) && (frequency < 2)) {

temp = x[2];

x[2] = x[4];

x[4] = temp;

return 0;

]

else if ((frequency >= 2) && (frequency <= 4)){

temp = x[0];

x[0] = x[l];

x[l] = x[2];

x[2] = x[4];

x[4] = temp;

return 0;

}

else if ((frequency > 4) && (frequency <= 8)){

temp = x[0];

x[0] = x[2];

x[2] = x[4] ;

x[4] = x[l];

x[l] = x[3];

x[3] = temp;

return 0;

}

else return i;

B6-26
M :DTR91B.AESAJVP4

-- measure.c DTW-8944-91003

(
double *v;

v=(double *)malloc((unsigned) (nh-nl+l)*sizeof(double));

if (!v) nrerror("allocation failure in vector()");

return v-nl;

/* */
Ant *ivector(int nZ, Ant nh)

/* ,/
/* Allocates memory for an integer vector. */

/* ,/
**

int *v;

v=(int *)malloc((unsigned) (nh-nl+l)*sizeof(int)) ;

if (!v) nrerror("allocation failure in ivector()");

return v-nl;

M :DTR91B.AES/WP4

B6-27

measure.c DTW-8944-91003

int i;

double **m;

m=(double **) malloc((unsigned) (nrh-nrl+l)*sizeof(double*));

if (!m) nrerror("allocation failure 1 in dmatrix()");

m -= nrl;

for (i=nrl ; i<=nrh ; i++) {

m[i] =(double *) malloc((unsigned) (nch-ncl+l)*sizeof(double)) ;

if (!re[i]) nrerror("allocation failure 2 in dmatrix()");

m[i] -= ncl;

}

return m;

/, */

void free_ivector(v, nl,nh)

int *v, nl,nh;

/* */
/* Frees memory allocated for an integer vector. */

/* */
**

free((char*) (v+nl)) ;

B6-28
M :OTR91B.AE5P, NP4

- measure.c DTW-8944-91003

{
int i ;

for(i=nrh;i>=nrl;i--) free((char*) (m[i]+ncl)) ;

free ((char*) (m+nrl)) ;

I* *I

void free_vector(double *v, int nl, int nh)

I* *I

/* Frees memory allocated for a vector. */

I* *I
**

free ((char*) (v+nl)) ;

B6-29
M :DTR91B.AE5/WP4

- measure.c DTW-8944-91003

/* ./
void svbksb(double **u, double w[], double **v, int m, int n,

double b[], double x[])

/* Performs back substitution for singular value decomposition. */

/* */
**

int jj, j,i;

double s,*tmp;

tmp=vector (I, n) ;

for (j=l;j<=n;j++) {

s=O.O;

if (w[j]) {

for (i=l;i<=m;i++) s += u[i] [j]*b[i];

s /= w[j] ;
}

trap [j]=s ;

}

for (j--l; j<=n; j++) {

s=O.O;

for (jj--l;jj<=n;jj++) s += v[9] [jj]*tmp[jj];

x(j]=s;

}

free_vector (tmp, i, n) ;

B6-30
M :DTRgl B.AES/WP4

- measure.c DTW-8944-91003

/. ./
void svdcmp(double **a, int m, int n, double *w, double **v)

/* ./

/* Performs singula_ value decomposition of matrix a. Robust tech- */

/* nique for matrix inversion which works well in parameter esti- */

/* mation applications. See numerical recipes for details. */

1. "1
**

int flag, i, its, j, jj,k,l,nm;

double c,f,h,s,x,y,z;

double anorm=0.0,g=0.0,scale=0.0;

double *rvl;

if (m < n) nrerror("SVDCMP: You must augment A with extra zero rows");

rvl=vector (I, n) ;

for (i=l;i<=n;i++) {

l=i+l;

rvl [i] =scale*g;

g=s=scale=0.0 ;

if (i <= m) {

for (k=i;k<=m;k++) scale += fabs(a[k] [i]);

if (scale) (

for (k=i;k<--m;k++) {

a[k] [i] /= scale;

s += a[k] [i]*a[k] [i] ;

}

f=a[i] [i] ;

g = -SIGN(sqrt (s),f) ;

h=f*g-s;

a[i] [i]=f-g;

if (i != n) (

for (j=l;j<=n;j++) {

for (s=0.0,k=i;k<=m;k++) s += a[k] [i]*a[k] [j];

f=s/h;

for (k=i;k<=m;k++) a[k] [j] += f*a[k] [i];

}
}

for (k=i;k<=m;k++) a[k] [i] *= scale;

)
}

w [i] =scale*g;

86-31
M :DTR91B.AESNVP4

measure.c DTW-8944-91003

}
for

}

for

g=s=scale=O. 0 ;

if (i <= m && i = n) {

for (k=l;k<=n;k++) scale += fabs(a[i] [k]);

if (scale) {

for (k=l;k<=n;k++) {

a[i] [k] /= scale;

s += a[i] [k]*a[i] [k] ;

}

f=a[i] [i] ;

g = -SIGN (sqrt (s), f) ;

h=f*g-s ;

a[i] [i] =f-g;

for (k=l;k<=n;k++) rvl[k]=a[i] [k]/h;

if (i != m) {

for (j=l;j<=m;j++) {

for (s=O.O,k=l;k<=n;k++) s

for (k=l;k<=n;k++) a[j] [k]

}
)

for

}

}

(k=l;k<=n;k++) a[i] [k] *= scale;

anorm=MAX (anorm, (fabs (w[i]) +fabs (rvl [i]))) ;

+-- a[j] [k]*a[i] [k];

+= s*rvl [k] ;

(i=n; i>=l ; i--)

if (i < n) {

if (g) {

for

for

(j=l;j<=n;j++)

v[j] [i]=(a[i] [j]/a[i] [l])/g;

(j=l;j<=n;j++) {

for (s=O.O,k=l;k<=n;k++) s +=

for (k=l;k<=n;k++) v[k] [j] +=

}

}

for (j=l; j<=n; j++)

}

v[i] [i]=l.O;

g=rvl [i] ;

l=i;

v[i] [j]=v[j] [i]=O.O;

a[i] [k]*v[k] [j];

s*v[k] [i] ;

(i=n;i>=l;i --) (

l=i+l;

g=w[i];

if (i < n)

M:DTR91B.AE5/WP4

B6-32

-- measure.c DTW-8944-91003

}
for

if

for (j--l;j<=n;j++) a[i] [j]=0.0;

(g) {

g--l. 0/g;

if (i != n) {

for (j=l;j<=n;j++) {

for (s=0.0,k=l;k<=m;k++) s

f=(s/a [i] [i])*g;

for (k=i;k<=m;k++) a[k] [j]

}
}

for (j=i;j<=m;j++) a[j] [i] *= g;

} else {

for (j=i;j<=m;j++) a[j] [i]=0.0;

}

++a [i] [i] ;

(k=n;k>=l;k--) {

for (its=l;its<=30;its++)

flag=l;

for (l=k;l>=l;l --) {

)
if

nm=l-l;

if (fabs(rvl[l])+anorm == anorm)

flag=0;

break;

)

if (fabs(w[nm])+anorm == anorm)

(flag) {

c=0.0;
s=l.0;

for (i=l;i<=k;i++) {

f=s*rvl[i];

if (fabs(f)+anorm != anorm)

g=w [i] ;

h=PYTHAG (f, g) ;

w[i]=h;

h=l.0/h;

c--g'h;

s = (-f'h) ;

for (j=l;j<=m;j++) {

y=a [j] [nm];

z=a[j] [i] ;

a[9] [nm]=y*c+z*s;

a[j] [i] =z'c-y's;

+= a[k] [i]*a[k] [j];

+= f*a [k] [i] ;

{

break;

B6-33
M :DT RglB.AE5/WP4

measure.c DTW-8944-91003

}

}

}

}

z=w [k] ;

if (i == k) {

if (z < 0.0) {

w[k] = -z;

for (j=l;j<=n;j++) v[j] [k]=(-v[j] [k]);

}

break;

}
if (its == 30) nrerror("No convergence in 30

x=w[l] ;
nm=k- 1 ;

y=w [nm];

g=rvl [nm] ;

h=rvl [k] ;

f= ((y-z) * (y+z) + (g-h) * (g+h)) / (2 . 0*h'y) ;

g=PYTHAG (f, 1.0) ;

f=((x-z)*(x+z)+h*((y/ (f+SIGN(g, f)))-h)) /x;

c=s=l. 0;

for (j=l;j<=nm;j++) {

i=j+l;

g=rvl [i] ;

y=w [i] ;

h=s*g;

g=c*g;

z=PYTHAG (f, h) ;

rvl [j]=z;

c=f/z;

s=h/z;

f=x*c+g*s ;

g=g*c-x*s ;

h=y*s;

y=y*c;

for (jj=l;jj<=n;jj++) {

x=v[j9] [j];

z=v[jj] [i];

v[jj] [j]=x*c+z*S;

v[jj] [i] =z'c-x's;

}

z=PYTHAG (f, h) ;

w[j]=z;

SVDCMP iterations") ;

B6-34

M:DTR91B.AES,_NP4

- measure.c DTW-8944-91003

if (z) {

z=l .O/z;
c=f*z;

s=h*z;

}

f= (c-g)+ (s.y);

x= (c'y) - (s'g) ;

for (jj=l; jj<=m; jj++)

y=a [jj] [j];

z=a[jj] [i];

a[j9] [j] =y*c+z*s;

a[jj] [i] =z'c-y's;

}

rvl [i]=0.0;

rvl [k]--f;

w [k] =x;

}

}

free vector(rvl, l,n);

/* */
void wait_microsec(int argl)

/* ./
/* Assembly language timing loop for short delays. DOS and BIOS */

/* */
**

{
asm

sl:

asm

asm

}

mov cx, argl

nop

loop sl

void interrupt (*oldfunc) ();

B6-35
M :DTR91B.AE5/WP4

- measure.c DTW-8944-91003

outportb(piol2_control, mode) ;

M :DTR91 B.AE5/WP4

B6-36

-- m easu re.c DTW-8944-91003

**
/, ,/
void dt error check()

/* */
/* This routine is called whenever an error is reported by the Data */

/* Translation board. It queries the board, interprets the resulting */

/* error code, and prints an error message. */

/* "1
**

int i;

int ready = 0;

int timeout = -32767;

char a, b, reg;

for (i = 0; i < i00; ++i){}

outpo rtb (dt_280 l_command_registe r, READ_ERR) ;

while (ready == 0) {

for (i = 0; i < i00; ++i){}

reg = inportb(dt_2801_status_register) ;

if ((reg & DOR) == DOR)

ready = 1 ;

else{

++t imeout ;

if (timeout --= 32767) {

printf("Device time-out on DT-2801 board, ln");

B6-37
M:DTR91B.AES/WP4

- measure.c DTW-8944-91003

printf("during dt error check.\n") ;

ready = 1 ;

}

}

}

a = inportb (dt_2801_data_register) ;

ready = 0 ;

timeout = -32767;

while (ready == 0) {

for (i = 0; i < i00; ++i){}

reg = inportb(dt_2801_status_register) ;

if ((reg & DOR) == DOR)

ready = 1 ;

else{

++timeout ;

if (timeout == 32767) {

printf("Device time-out on DT-2801 board,\n");

printf("during dt error check.\n") ;

ready = 1 ;

}

}
}

b = inportb (dt_2801_data_register) ;

• f (a & 0x02) == 0x02)

printf ("Command Overwrite Error\n") ;

if (a & 0x04) == 0x04)

printf("Clock Set Errorkn");

if (a & 0x08) == 0x08)

printf("Digital Port Select Error\n");

if (a & 0xl0) == 0xl0)

printf("Digital Port Set Error\n") ;

if (a & 0x20) == 0x20)

printf("DAC Select Error\n");

if (a & 0x40) == 0x40)

printf("DAC Clock Errorkn");

if ((a & 0x80) == 0x80)

printf("DAC No. Conversions Value Error\n");

if ((b & 0x01) == 0x01)

printf ("A/D Channel Error\n") ;

if ((b & 0x02) == 0x02)

printf("A/D Gain Error\n") ;

if ((b & 0x04) == 0x04)

printf("A/D Clock Error\n");

if ((b & 0x08) == 0x08)

printf("A/D Multiplexer Error\n");

if ((b & 0xl0) == 0xl0)

printf("A/D No. Conversions Value Error\n");

if ((b & 0x20) == 0x20)

printf("Data Where Command Expected Error\n");

B6-38
M:DTR91B.AE5/WP4

-- measu re.c DTW-8944-91003

/. */

void dt_set_wait(unsigned char bytecode)

/. */

/* Part of the handshaking with the Data Transletion board, this */

/* routine waits until a particular byte pattern is set in the DT- */

/* 2801's status register. */

/, *t
**

char ready, i, idle;

int timeout;

ready = 0;

timeout = -32767;

while (ready == 0) {

idle = 0;

while (idle <= 100) ++idle;

i = inportb(dt_2801_status_register);

if ((i & 0x80) == 0x80) dt error check();

if ((i & bytecode) == bytecode)

ready = i;

else

{

++timeout;

if (timeout == 32767){

printf("Device time-out on DT-2801 board,\n");

printf("during dt set_wait.\n");

ready = I;

}

B6-39

M :DTR91B.AE5,_/P4

_ measure.c DTW-8944-91003

/. ,/
void dt set wait no error(unsigned char bytecode)

/* *t
/* Same as dt set wait except this routine does not check for errors +/

/* from the DT-2801 board */

/* */
**

char ready = 0, i, idle;

int timeout;

timeout = -32767;

while (ready == 0) {

idle = 0;

while (idle <= 100) ++idle;

i = inportb(dt_2801_status_register);

if ((i & bytecode) == bytecode)

ready = I;

}
)

else

{

++timeout;

if (timeout == 32767){

printf("Device time-out on DT-2801 board, ln");

printf("during dt set wait.\n");

ready = i;

}

B6-40
M :DTR91 B.AES/WP4

- measure,c DTW-8944-91003

**
/* */
void dt clear wait(unsigned char bytecode)

/* */
/* Part of the handshaking with the Data Translation board, this */

/* routine waits until a particular byte pattern is cleared in the */

/* DT-2801's status register. */

/* */
**

char ready, i, idle;

int timeout;

ready = 0;

timeout = -32767;

while (ready == 0) {

idle = 0;

while (idle <= i00) ++idle;

i = inportb(dt_2801_status_register) ;

if ((i & 0x80) == 0xS0) dt error check();

if ((i & bytecode) == 0)

ready = I;

else

{

++timeout;

if (timeout == 32767){

printf("Device time-out on DT-2801 board,\n");

printf("during dt clear wait.\n");

ready = i;

}

M :OTR91B.AE5P_VP4

B6-41

measure.c DTW-8944-91003

**
/, */
void dt 2801 init()

/. - _ ./
/* This routine initializes the Data Translation board. It first */

/* resets the board, then reads its identity and prints out the board */

/* type. Then it executes the boards self-test, and sets both */

* digital ports for output. */

. */

unsigned char status, test val, id, revno;

int i;

status = inportb(dt_2801_status_register);

if ((status & 0x70) != 0) {

printf("Illegal status register value\n");

exit(1);

}

outportb(dt_2801_command_register, STOP); /* Stops execution of any */

for (i = 0; i < i00; ++i) (} /* existing commands. */

status = inportb(dt_2801_data_register); /* Dummy read to clear */

dt set wait no error(READY); /* registers. */

outportb(dt_2801_command_register, RESET);/* Reset board. */

dt set wait no error(DOR);

status = inportb(dt_2801_data_register); /* Read board ID */

dt set wait(READY);

id = status & 0xF0;

revno = status & 0x0F;

/* Decode board ID number */

switch (id) (

case 0x00: printf("DT-2801 board,") ;

break;

case 0xl0: printf("DT-2805 board,") ;

break;

case 0x20: printf("DT-2808 board,");

break;

case 0x30: printf("DT-2808 board, with extender,");

break;

case 0x50: printf("DT-2801-A board,");

break;

case 0x80: printf("DT-2801/5716 board,");

break;

B6-42

M :DTR918,AES/WP4

- measure.c DTW-8944-91003

printf("DT-2805/5716 board,") ;case 0x90 :

break;

case 0xA0: printf("DT-2818 board,") ;

}

printf(" firmware revision %2d.\n", revno) ;*/

outportb (dt_2801_command_register, TEST) ;

for (i = I; i < 256; ++i) {

dt set wait(DOR); /* sequential values.

test_val = inportb(dt 2801_data_register) ;

status = inportb(dt_2801_status_register) ;

if ((test_val != i) I } ((status & 0xS0) != 0)) {

printf("DT-2801 Failure in TEST Routine\n");

exit (i) ;

}

}
dt set wait (DOR);

test_val = inportb(dt_2801_data_register) ;

status = inportb(dt_2801_status_register);

if ((test_val != 0) t I ((status & 0x80) != 0)) [

printf("DT-2801 Failure in TEST Routine\n") ;

exit (I) ;

}

outportb (dt_2801__command_register, STOP) ;

for (i = 0; i < i00; ++i){}

status = inportb(dt_2801_data_register);

dt set wait no error(READY);

outportb(dt_2801_command_register, RESET); /* Reset board.

dt set wait no error(DOR);

status = inportb(dt_2801_data_register) ;

dt set wait (READY) ;

outportb(dt_2801_command register, SET_DIGITAL_OUTPUT) ; /* Set up

dt clear wait(DIF); /* both digital ports for

outportb(dt_2801_data_register,BOTH) ; /* output.

dt clear wait(DIF);

dt set wait(READY);

/* Self test routine. */

/* Board should output */

/* Stop self-test.

,/

./

./

*/
./
,/

B6 -43

M :DTR91B.AES/WP4

measure.c DTW-8944-91003

/. ./

void write_digital(unsigned char byte_select, unsigned char out_byte)

/* */

/* This I/O routine writes the byte out_byte to the DT-2801 parallel */

/* port selected by byte_select. The value of byte_select can be 1 */

/* or 0 since the DT-2801 has only 2 ports. */

/* */

**

{

int i;

outportb (dt_280 l_command_register, WRITE_D IG_IMM) ;

dt clear wait (DIF);

outportb(dt_2801_data_register, byte_select) ;

dt clear wait(DIF);

outportb(dt_2801_data_register, out_byte) ;

dt clear wait (DIF) ;

dt set wait (READY) ;

}

M:DTR91B.AES/WP4

B6-44

-- measure.c DTW-8944-91003

/* ,/
void write to YTF(unsigned int value)

I* */
/* This I/O routine writes the integer value to the YIG-tuned */

/* filter's control port. */

/* */
**

unsigned char a;

value += YTFTWEAK;

YTFLSB = value;

write_digital(0, ~YTFLSB);

PORT1 = PORT1 & 0xF8;

write_digital(l, PORT1);

PORT1 = PORT1 & 0xF7;

write_digital(l, PORT1);

PORT1 = (PORT1 i 0x08);

write_digital(l, PORT1);

UPPERS = ((value >> 8) & 0x0F) I (UPPERS & 0xF0);

wrzte_digital(0, ~UPPERS);

PORT1 = (PORT1 & 0xF8) 1 0x02;

wrlte_digital(l, PORT1);

PORT1 = PORT1 & 0xF7;

write_digital(l, PORT1);

PORT1 = (PORT1 1 0x08);

write_digital(l, PORT1);

B6-45
M :DTR91B.AE5/WP4

measure.c DTW-8944-91003

**
/. ,/
void write to YTO(unsigned int value)

/* */

/* This I/O routine writes the integer value to the YIn-tuned */

/* oscillator's control port. */

/* */
**

YTOLSB = value;

write_digital(0, ~YTOLSB);

PORT1 = (PORT1 & 0xFS) i 0x01;

write_digital(l, PORT1);

PORT1 = PORT1 & 0xF7;

write_digital(l, PORT1);

PORT1 = (PORT1 t 0x08);

write_digital(l, PORT1);

UPPERS = ((value >> 4) & 0xF0) l (UPPERS & 0x0F) ;

write_digital(0, ~UPPERS);

PORT1 = (PORT1 & 0xF8) i 0x02;

write_digital(l, PORT1);

PORT1 = PORT1 & 0xF7;

write_digital(l, PORT1);

PORT1 = (PORT1 f 0x08);

write_digital(l, PORT1);

M:DTRO1B.AE5/WP4

B6-46

-- measure.c DTW-8944-91003

/. */
void write to VCO(unsigned int value)

/. */
/* Similar to write to YTF, this routine programs the signal */

/* generator's voltage-controlled oscillator. */

/. */
**

VCOMSB = (value >> 4) & 0xF0;

write_digital(0, ~VCOMSB);

PORT1 = (PORT1 & 0xFS) 1 0x05;

write_digital(l, PORT1) ;

PORT1 = PORT1 & 0xFT;

write_digital(l, PORT1);

PORT1 = (PORT1 l 0x08);

write_digital(l, PORT1);

VCOLSB = value;

write_digital(0, ~VCOLSB) ;

PORT1 = (PORT1 & 0xFS) { 0x04;

write_digital(l, PORT1) ;

PORT1 = PORT1 & 0xF7;

write_digital(l, PORT1);

PORT1 = (PORT1 1 0x08);

write_digital(l, PORT1);

B6-47

M:DTR91B.AES,'WP4

measure.c DTW-8944-91003

**
/. ./
void write switch(unsigned char value)

/* */

/* Similar to write to YT_, this routine programs the signal */

/* generator's internal selector switch. */

/* */
**

(
CONTROL = value;

write_digital(0, ~CONTROL);

PORT1 = (PORT1 & 0xF8) I 0x03;

write_digital(l, PORT1);

PORT1 = PORT1 & 0xF7;

write_digital(l, PORT1);

PORT1 = (PORT1 1 0x08);

write_digital(l, PORT1) ;

B6-48
M:DTR91B,AE5/WP4

- measure.c DTW-8944-91003

/* ,/
void to_frequency(double frequency)

/* ,/
/* This routine uses write to YTF, write to YTO. write to VCO, and */

/* write_switch to command the signal generator to the specified */

/* frequency. To keep the filter aligned with the oscillator */

/* frequencies, the global array cal_store[] is referenced. */

/* cal_store[] contains a look-up table generated from an alignment */

/* routine which gives the oscillator code which lines up with a */

/* given filter code value. ,/

/* ./

**

int i;

unsigned int YTF_code, YTO_code, VCO code;

unsigned char CONTROL_code;

double temp, templ;

static double YTF_freq[6] = {i.0, 2.691, 4.394, 6.098, 7.798, 8.0};

static double YTF_vaI[6] = {0.0, 994.0, 1989.0, 2983.0, 3977.0,

4095.0};

if ((frequency <= 8.0) && (frequency >= 2.0)){

CONTROL code = 0x02;

write_switch (CONTROL_code) ;

for (i = 0; i < 6; ++i) {

temp = frequency - YTF_freq[i];

if (temp <= 0) break;

]

temp = YTF_val[i-l] + (frequency - YTF_freq[i-l])

/ (YTF_freq[i] - YTF_freq[i-l])

* (YTF_val[i] - YTF val[i-l]);

templ= modf(temp, &temp);

if (templ> 0.5) temp = temp + 1.0;

YTF_code = (unsigned int) temp;

write to YTF(YTF_code);

write to YTO(calstore[YTF_code]);

}

else if {(frequency < 2.0) && (frequency >= 1.0)) {

CONTROL code = 0x00;

write_switch(CONTROL_code);

temp = YTF_vaI[0] + (frequency - YTF_freq[0])

/ (XTF_freq[l] - YTF_freq[0])

* (YTF_vaI[I] - YTF val[0]) ;

B6-49
M:OTR91B.AE5/WP4

- measure.c DTW-8944-91003

templ= modf(temp, &temp);

if (templ> 0.5) temp = temp + 1.0;

YTF_code = (unsigned int) temp;

write to YTF(YTF_code);

write to VCO(calstore[YTF_code]);

86-50
w M :DTR918.AE5/WP4

measure.c DTW-8944-91003

,/
/,
void set_gains_int(char gl, char g2, char intl, char bias)

*/
/* ,/
/* This routine sets the gains of the various programmable ampli-

/* fiefs in the network analyzer's post-detection electronics. It */

/* also sets the integration time and the bias current. */

/* Communication with the post-detection electronics is through */

/* the PIO-12 24-bit parallel interface card. */

/* */
**

{

asm

outportb(piol2 pb, 0x14);

imP $+2

outportb(piol2 pa,

~((0x01 << (gl-l)) J (0x08 << (g2-1)) l

((bias << 7) & 0xS0))) ;

asm imP $+2

outportb(piol2_pc, 0x00);

asm jmp $+2

outportb(piol2_pc, 0x80);

asm imp $+2

outportb(piol2_pc, 0x00);

asm jmp $+2

outportb(piol2_pb, 0x15) ;

asm jmp $+2

outportb(piol2_pa, ~(0x01 << (intl-l))) ;

asm jmp $+2

outportb(piol2_pc, 0x00);

asm imp $+2

outportb(piol2 pc, 0xS0);

asm jmp $+2

outportb(piol2 pc, 0x00);

asm jmp $+2

)

B6-51

M :DTR91B,AES_NP4

measure.c DTW-8944-91003

(
char mode;

outportb(piol2__pa, OxO0);

asm jmp $+2

outportb(piol2__pb, OxO0);

asm jmp $+2

outportb(piol2_pc, Ox00);

asm imp $+2

mode = pa is input J pb is output J pclo is output

I pchi is output I pa_pchi is mode_O i pbpclo is mode_O

I mode_set_active;

mode set(mode);
q

(
char mode;

mode = pa is output f pb is output I polo is output

I pchi is output I pa_pchi is mode_O I pb pclo is mode_O

I mode set active;

mode set (mode) ;

B6-52

M:DTR91B.AEShVP4

measure.c
DTW-8944-91003

*/
/,
void read ads(char s channel, char e channel, unsigned int *out_vector)

/* .!
/* Uses the 16-bit A/D converter in the post-detection electronics

/* to read the analog outputs of the various synchronous detectors. */

/* s channel is first channel to be read, e channel is last. Array */

/* of converted values is returned in out vector.
-- ./

/*

char bytel[2], i;

unsigned int *temp;

temp = (unsigned int *) bytel;

asm

asm

asm

asm

asm

outportb(piol2 pc, 0xC0);

delay(2);

outportb(piol2 pc, 0xCS);

wait microsec(100);

for (i = s channel; i <= e channel; ++i) {

outportb(piol2_pb, 0x08 1 (i & 0x07));

jmp $+2;

outportb(piol2_pc, 0x88);

jmp $+2;

outportb(piol2 pc, 0xCS);

wait microsec(10);

outportb(piol2 pc, 0xES);

asm jmp $+2;

outportb(piol2 pc, 0xC8);

wait microsec(100) ;
m

outportb(piol2_pb, 0xlS);

jmp $+2;

bytel[0] = inportb(piol2_pa);

imp $+2;

outportb(piol2_pb, 0xlg);

imP $+2;

bytel[l] = inportb(piol2_pa);

out vector[i-s channel] = ~(*temp);

)

outportb(piol2_pc, 0xC0) ;

}

B6-53

M :DT R91B.AESh_4

- rneasure.h DTW-8944-91003

#include <conio.h>

#include <alloc.h>

#include <dos.h>

#include <fcntl.h>

#include <qraphics.h>

#include <io.h>

#include <math.h>

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <sys\stat.h>

#include <time.h>

#define sqr(x) ((x)*(x))

#define piol2_pa 0x200

#define piol2_pb 0x201

#define piol2_pc 0x202

#define piol2_control 0x203

#define pclo is input 0x01

#define pclo is output 0x00

#define pb is input 0x02

#define pb is output 0x00

#define pb pclo is mode_0 0x00

#define pb_.pclo is mode 1 0x04

#define pchi is input 0x08

#define pchi is output 0x00

#define pa is input 0xl0

#define pa is output 0x00

#define pa__pchi is mode_0 0x00

#define pa pchi is mode 1 0x20

#define pa_.pchi is mode 2 0x40

#define set reset mode 0x00

#define mode set active 0x80

#define pi 3?14139265358979324

#define twopi 6.28318530717958648

#define v 1 299792458.0

#define CW 0

#define SWEEP 1

#define CW PULSE 2

#define SWEEP PULSE 3

#define dt_2801_status_register 0x02ED

#define dt_2801_command_register 0x02ED

#define dt_2801_data_register 0x02EC

#define STOP 0x0F

#define RESET 0x00

B7-1

M;DTRglB.AE5DA'P4

- measure.h DTW-8944-91003

#define CLEAR ERROR 0x01

#define SET INT CLK 0x03

#define SET DIGITAL OUTPUT 0x05

#define TEST 0x0B

#define SET A D PARAMS 0x0D

#define WRITE DIG IMM 0x07

#define READ ERR 0x02

#define BOTH 0x02

#define DOR 0x01

#define DIF 0x02

#define READY 0x04

#define COMMAND 0x08

#define CERROR 0x80

#define Nslides 20

#define Ndiodes 5

#define max heads 2

#define number of diodes 5

#define number_of_phases 12

#define number of terms 3

#define number of delays 5

#define pi 3.14159265358979324

#define twopi 6.28318530717958648

#define v 1 299792458.0

#define number of tests i0000

#define frec[_size sizeof(freq_node)

#define cal_size sizeof(cal_node)

#define next_complex_value() ++complex_pointer

#define next c mat_value() ++c_mat_pointer

#define reset_complex_pointer() complex_pointer=complex_base

#define reset c mat_pointer() c_mat__pointer=c_mat_base

#define free_complex_mem() farfree(++complex_base);farfree(++c_mat_base)

typedef struct COMPLEX {double x,y;} complex;

typedef struct COMPLEX_MAT {complex all, a12, a21, a22;} complex_mat;

typedef double *diode_array;

typedef struct cal_nodel{

double diode volts[number of diodes];

struct cal nodel *next cal node;

} cal_node;

typedef struct freq_nodel{

87-2
M :DTR91B.AE5/WP4

measure.h DTW-8944-91003

double

double

double

double

double

double

double

double

double

double

double

complex

frequency, power_level, R_c[2], R[2];

*diode_volts;

zl volts[number of diodes];

z2 volts[number of diodes];

z3 volts[number of diodes];

meas_volts[number of diodes];

center_mag[number of diodes];

theta[number of diodes];

center r[number of diodes];

center i[number of diodes];

scale[number of diodes];

S[max__heads];

complex C[number_of_phases] [3];

double bilin[2] [7];

struct frec[nodel *next_frec[node;

cal node *first cal node;

} freq__node;

typedef struct NBS nodel{

double d volts[4];

double center_mag[4];

double theta[4];

double center rl[4];

double center ii[4];

double scalel[4];

complex bilin[3];

} NBS_node;

static double at,bt,ct;

#define PYTHAG(a,b) ((at=fabs(a)) > (bt=fabs(b)) ? \

(ct=bt/at,at*sqrt(l.0+ct*ct)) : (bt ? (ct=at/bt,bt*sqrt(l.0+ct*ct)) : 0.0))

static double maxargl,maxarg2;

#define MAX(a,b) (maxargl=(a),maxarg2=(b), (maxargl) > (maxarg2) ?\

(maxargl) : (maxarg2))

#define SIGN(a,b) ((b) >= 0.0 ? fabs(a) : -fabs(a))

#define TOL 1.0e-5

complex *complex__base = NULL;

complex *complex_pointer = NULL;

complex_mat *c mat_base = NULL;

complex_mat *c mat_pointer = NULL;

#define Nslides 20

B7 -3
M :DTRglB.AES/WP4

measu re.h DTW-8944-91003

#define Ndiodes 5

struct sweeper_status {

int mode;

double frequency, freq_step, start_freq, stop_freq, sweep_time;

);

unsigned char YTOLSB, YTFLSB, UPPERS, CONTROL, PORT1, VCOLSB, VCOMSB;

int YTFTWEAK = 0, MOD ON = 0, ODD NUM = 0;

double FOFFSET = 0.0, DELTAF = 0.0;

int *calstore;

void nrerror(char error text[]);

complex Complex(double re, double im);

void get complex_mem(void);

complex *co(double x, double y);

complex *su(complex *a, complex *b);

complex *di(complex *a, complex *b);

complex *pr(complex *a, complex *b);

complex *qu(complex *a, complex *b);

double c abs(complex *a) ;

complex *c_sqrt(complex *a);

complex *rc mul(double x, complex *a);

complex *c_exp(complex *z);

cal node *add_cal_node(freq_node *a);

freq._node *add freq_node(freq_node *a) ;

int gaussjl(double a[7] [7], int n, double b[7] [2], int m);

void find_w(freq__node *a, double diode_volts[number of diodes], complex *w,

int dsel);

87-4

M :DTRglB.AE5/WP4

measure.h DTW-8944-91003

int sum into matrix(freq_node *a, double **marl,

double **vectl, int diodes[3]);

int sum into matrixl(freq_node *a, double **matl, double **vectl) ;

void fill_complex_matrix(freq node *a, double matl[7] [7],

double vectl[7] [2]);

void fill_complex_vector(freq_node *a, double vectl[7] [2]);

void four__port_cal(freq_node *root);

void find_S(freq node *a);

int find centers(double vectl[], double *center_mag, double *scale);

int permute(double x[number of diodes], double frequency);

int c_permute(complex x[number of diodes], double frequency);

double *vector(int nl, int nh);

int *ivector(int nl, int nh) ;

double **dmatrix(int nrl, int nrh, int ncl, int nch);

void free_ivector(int *v, int nl, int nh);

void free dmatrix(double **m, int nrl, int nrh, int ncl, int nch);

void free vector(double *v, int nl, int nh) ;

void gaussj(double **a, int n, double **b, int m);

void svbksb(double **u, double w[], double **v, int m, int n,

double b[], double x[]) ;

void svdcmp(double **a, int m, int n, double *w, double **v);

void svdfit(double xl[], double x2[], double y[], double sig[],

int ndata, double a[], int ma, double **u, double **v, double w[],

double *chisq, void (*funcs) (double, double, double *, int));

B7-5

M :DTR91B.AE5/WP4

measure.h DTW-8944-91003

void wait microsec(int argl);

void

void

void

void

void

void

void

void

void

void

void

void

void

void

vold

void

void

void

void

interrupt (*oldfunc) ();;

bios wait(unsigned int microseconds);

mode set (char mode) ;

dt error check();

dt set wait(unsigned char bytecode);

dt set wait no error(unsigned char bytecode);

dt clear wait(unsigned char bytecode);

dt 2801 init();

write_digital(unsigned char byte_select,

write to YTF(unsigned int value);

write to YTO(unsigned int value);

write to VCO(unsigned int value);

write switch(unsigned char value);

to_frequency(double frequency);

set_gains_int(char gl, char g2, char intl,

set_analog_channel(char cl);

data in();

data out () ;

read_ads (char schannel,

unsigned char outbyte);

char bias) ;

char e_channel, unsigned int *out_vector);

B7-6

M :DTR91B.AES/WP4

